
www.manaraa.com

I

Virus Detection
Using Artificial Immune System

with Genetic Algorithm

Prepared by
Suha M. A. Afaneh

Supervisors

 Prof. Alaa AL-Hamami
Prof. Raed Abu Zitar

A Dissertation Submitted in Partial Fulfillment of the
Requirements for Degree of Doctor of Philosophy in

Computer Science

Department of Computer Science
College of Computer Sciences and Informatics

Amman Arab University

August 2010

www.manaraa.com

II

www.manaraa.com

III

www.manaraa.com

IV

Acknowledgments
A long journey of making this dissertation starts with small steps. For that I want

to thank two great men who supported me, each in a different way. For Dr Alaa

Hamami I say, thank you for your great support and encouragement which helped

me to move on inspite of the many obstacles which faced this work. For Dr Raed

Abu Zitar I say thank you for your valuable advices which was present every

moment I felt the gap in my destination. Especially that you have suggested this

interesting topic. For both of you, I must say a word of appreciation toward all of

your efforts to help me in my journey.

Nevertheless, great deeds can not be done with out the assistance of their

surroundings, to all of these people I have to say more than thank you, because

you have filled the spaces I left behind and your smiles kept me focused on my

target for Mais Afaneh, Dr Khaled Alqawasmy, Firas Afaneh, Tahany El-Najy,

Shafiqa Bahlawan, Khaled J. Al-Attar, Ferial Al-Alaf, Dimah Fadda and Ahmad

Saadeh. Nothing more than a word of gratitude can be said.

www.manaraa.com

V

Dedication
To the great woman who pushes and supports me all over the way.

To whom I call the light of my day, the source of my happiness, my pearl.

Dear mother Souhaila Bahlawan, this work is for you.

To my husband Abed, my soul mate, and the love of my life.

To the father of my two lovely children (Sama and Karam); the man who makes

every thing comes true and possible for me. He is my mirror which reflects my

true image of being; a human, a wife, a mother, a student, and a working woman.

He has been, with my children the source of my inspiration and my constant

changing power toward the best.

To the soul of my father, Ameen Afaneh, I miss you and I wish if you were here

with me.

www.manaraa.com

VI

Table of contents

Acknowledgments ... IV

Dedication... V

Table of contents ... VI
List of Figures .. VIII
List of Tables .. X

List of Abbreviations ... XII
Abstract..XIII
Arabic Abstract .. XV

Chapter One Introduction .. 1

1.1 Introduction ... 1

1.2 The Statement of the Problem .. 3

1.2.1 Research Questions .. 5

1.2.2. Definitions ... 6

1.2.3 Thesis Contributions .. 7

1.3 The Thesis Structure .. 8

Chapter Two Literature Reviews and Related Works 10

2.1. Literature views..10

2.1.1. The Immune System (IS)..10

2.1.2. The Artificial Immune System (AIS) .. 14

2.1.3. The Viruses..19

2.1.4. The Anti-virus ... 25

2.1.5 Genetic Algorithm .. 26

2.2. Related Works ... 28

2.2.1. Studies about the Artificial Immune System ... 28

2.2.2 Studies about Computer Viruses ... 30

2.2.3. Studies about Computer Viruses with AIS .. 33

Chapter Three Methodology .. 39

3.1. Data sets ... 39

3.2. Research tools ... 39

3.3. Research Stages ... 39

3.3.1. The design and implementation of the VDC algorithm............................ 40

3.3.2 The testing of the VDC algorithm ... 51

3.3.3 The optimization of the VDC algorithm by using the GA 56

3.3.4 The testing of the optimized VDC algorithm based on GA 58

Chapter Four The VDC algorithm Results and Analysis 59

4.1 Training of the VDC algorithm .. 59

4.1.1 The Training Phase Analysis ... 84

4.2 Matching the VDC algorithm ... 86

4.2.1 The Matching Phase Analysis ... 98

Chapter Five The Optimization of the VDC Algorithm using the GA 108

5.1. The Optimized VDC Algorithm based on GA ... 108

5.1.1 GA Optimization .. 109

5.1.2 GA Training ... 114

5.1.3 GA Matching .. 124

www.manaraa.com

VII

5.2. The Comparison between the Standard VDC algorithm and the Optimized
VDC algorithm based on GA .. 136

Chapter Six Conclusions and Future Work .. 146

6.1. Conclusions ... 146

6.2. Comparison with Related Works ... 147

6.3. Limitations ... 148

6.4. Future Work ... 149

The References .. 151

Appendixes ... 158

Appendix A: .. 158

Appendix B: Parts of the Matching Results... 161

Appendix C: Parts of the GA Matching Results .. 171

Appendix D: Malware Types ... 174

Appendix E Antivirus Software Generations ... 178

www.manaraa.com

VIII

List of Figures

Figure 1: Major steps of the research ... 5
Figure 2 : The Basic Algorithm of Clonal Selection ... 7
Figure 3 : The cells and secretions of the immune system ... 11
Figure 4 : How the immune system defends the body ... 12
Figure 5: Antibody molecule: V-region & C-region. ... 13
Figure 6: The Basic Algorithm of Negative Selection .. 15
Figure 7: The Clonal selection .. 16
Figure 8: The Basic Algorithm of Network Theory ... 18
Figure 9: Idiotopic Network ... 19
Figure 10: A simple virus structure .. 21
Figure 11: A classic parasitic virus .. 22
Figure 12: The Genetic Algorithm flowchart .. 26
Figure 13: Censoring - Generation of Valid Detector Set .. 33
Figure 14: Monitor Protected Strings for Changes .. 33
Figure 15: Kephart Immune System ... 35
Figure 16: The Stages of research .. 40
Figure 17: The VDC algorithm main steps flowchart ... 42
Figure 18: Cloning, Hypermutation, and Reselection .. 43
Figure 19: The VDC algorithm pseudo code ... 44
Figure 20: Matching the VDC algorithm flowchart ... 53
Figure 21: The pseudo code of the matching of the VDC algorithm 54
Figure 22: The GA as Parameters Optimizer .. 57
Figure 23: The flowchart of optimizing the VDC algorithm by the GA 58
Figure 24: The Initial Population ... 60
Figure 25: The first run Mean fitness & Best fitness .. 61
Figure 26: The first run final population ... 62
Figure 27: The second run Mean fitness & Best fitness .. 63
Figure 28: The second run final population ... 64
Figure 29: The third run Mean fitness & Best fitness ... 65
Figure 30: The third run final population.. 66
Figure 31: The forth run Mean fitness & Best fitness .. 67
Figure 32: The forth run final population ... 68
Figure 33: The fifth run Mean fitness & Best fitness .. 69
Figure 34: The fifth run final population ... 70
Figure 35: The sixth run Mean fitness & Best fitness .. 71
Figure 36: The sixth run final population ... 72
Figure 37: The seventh run Mean fitness & Best fitness ... 73
Figure 38: The seventh run final population .. 74
Figure 39: The eighth run Mean fitness & Best fitness .. 75
Figure 40: The eighth run final population ... 76
Figure 41: The ninth run Mean fitness & Best fitness .. 77
Figure 42: The ninth run final population ... 78
Figure 43: The tenth run Mean fitness & Best fitness .. 79
Figure 44: The tenth run final population... 80
Figure 45: The eleventh run Mean fitness & Best fitness .. 81
Figure 46: The eleventh run final population ... 82
Figure 47: The twelfth run Mean fitness & Best fitness ... 83
Figure 48: The twelfth run final population .. 84
Figure 49: The Mean fitness of matching Sig1 run with 0% infected files 87
Figure 50: The Best fitness of matching Sig1 run with 0% infected files 88
Figure 51: The Mean fitness of matching Sig6 run with 5% infected files 89

www.manaraa.com

IX

Figure 52: The Best fitness of matching Sig6 run with 5% infected files 90
Figure 53: The Mean fitness of matching Sig1 run with 25% infected files 91
Figure 54: The Best fitness of matching Sig1 run with 25% infected files 92
Figure 55: The Mean fitness of matching Sig4 run with 50% infected files 93
Figure 56: The Best fitness of matching Sig4 run with 50% infected files 94
Figure 57: The Mean fitness of matching Sig1 run with 75% infected files 95
Figure 58: The Best fitness of matching Sig1 run with 75% infected files 96
Figure 59: The Mean fitness of matching Sig2 run with 100% infected files 97
Figure 60: The Best fitness of matching Sig2 run with 100% infected files 98
Figure 61: The Current Best Individual in the first GA optimization run 110
Figure 62: The Mean & Best Fitness in the first GA optimization run 111
Figure 63: The Current Best Individual in the second GA optimization run 111
Figure 64: The Mean & Best Fitness in the second GA optimization run 112
Figure 65: The Current Best Individual in the third GA optimization run 112
Figure 66: The Mean & Best Fitness in the third GA optimization run 113
Figure 67: The Current Best Individual in the forth GA optimization run 113
Figure 68: The Mean & Best Fitness in the forth GA optimization run 114
Figure 69: The first GA training run Mean Fitness & Best Fitness 116
Figure 70: The first GA training run final population .. 117
Figure 71: The second GA training run Mean Fitness & Best Fitness 118
Figure 72: The second GA training run final population .. 119
Figure 73: The third GA training run Mean Fitness & Best Fitness 120
Figure 74: The third GA training run final population ... 121
Figure 75: The forth GA training run Mean Fitness & Best Fitness 122
Figure 76: The forth GA training run final population ... 123
Figure 77: The Mean fitness of matching Sig1 run with 0% infected files 125
Figure 78: The Best fitness of matching Sig1 run with 0% infected files 126
Figure 79: The Mean fitness of matching SigGA4 run with 5% infected files 127
Figure 80: The Best fitness of matching SigGA4 run with 5% infected files 127
Figure 81: The Mean fitness of matching SigGA1 run with 25% infected files 128
Figure 82: The Best fitness of matching SigGA1 run with 25% infected files 129
Figure 83: The Mean fitness of matching SigGA4 run with 50% infected files 130
Figure 84: The Best fitness of matching SigGA4 run with 50% infected files 131
Figure 85: The Mean fitness of matching SigGA1 run with 75% infected files 132
Figure 86: The Best fitness of matching SigGA1 run with 75% infected files 132
Figure 87: The Mean fitness of matching SigGA1 run with 100% infected files 133
Figure 88: The Best fitness of matching SigGA1 run with 100% in fected files 134

www.manaraa.com

X

List of Tables

Table 1: The differences between CLONALG and VDC algorithm 50
Table 2: Files' pool contents .. 51
Table 3: The parameters values of the training phase .. 52
Table 4: The Parameters values of the matching phase ... 55
Table 5: The first Training run results ... 61
Table 6: The second Training run results .. 62
Table 7: The third Training run results .. 65
Table 8: The forth Training run results .. 67
Table 9: The fifth Training run results ... 69
Table 10: The sixth Training run results .. 70
Table 11: The seventh Training run results ... 73
Table 12: The eightth Training run results ... 75
Table 13: The ninth Training run results.. 77
Table 14: The tenth Training run results ... 79
Table 15: The eleventh Training run results .. 81
Table 16: The twelfth Training run results ... 83
Table 17: The Summary of the training results.. 85
Table 18: The results of the matching of Sig1 with 0% infected files 87
Table 19: The summary of matching of Sig5 and Sig8 with 0% infected files 88
Table 20: The results of the matching of Sig6 with 5% infected files 89
Table 21: The summary of the matching of Sig7, Sig10 and Sig11 with 5% infected files
 ... 90
Table 22: The results of the matching of Sig1 with 25% infected files 91
Table 23: The summary of the matching of Sig2 and Sig12 with 25% infected files ... 92
Table 24: The results of the matching of Sig4 with 50% infected files 93
Table 25:The summary of the matching of Sig5 and Sig8 with 50% infected files 94
Table 26: The results of the matching of Sig1 with 75% infected files 95
Table 27: The summary of the matching of Sig3, Sig6, Sig9 and Sig12 wi th 75% infected
files ... 96
Table 28: The results of the matching of Sig2 with 100% infected files 97
Table 29: The summary of the matching of Sig4, Sig7, Sig10, Sig11 and Sig12 with 100%
infected files ... 98
Table 30: The matching results ... 101
Table 31: The detection rate of the matching results... 106
Table 32: The GA Optimization Runs Specifications ... 110
Table 33: The GA optimization results .. 114
Table 34: The GA training runs specifications ... 115
Table 35: The first GA training run results ... 116
Table 36: The second GA training run results ... 118
Table 37: The third GA training run results ... 120
Table 38: The forth GA training run results ... 122
Table 39: The Summary of the GA training results ... 124
Table 40: The GA matching runs specifications .. 124
Table 41: The results of the matching of SigGA2 with 0% infected files 125
Table 42: The results of the matching of SigGA4 with 5% infected files 126
Table 43: The results of the matching of SigGA1 with 25% infected files 128
Table 44: The summary of the GA matching results of SigGA2 with 25% infected files129
Table 45: The results of the matching of SigGA4 with 50% infected files 130
Table 46: The results of the matching of SigGA1 with 75% infected files 131
Table 47: The results of the matching of SigGA1 with 100% infected files 133

www.manaraa.com

XI

Table 48: The summary of the GA matching of SigGA2, SigGA3 and SigGA4 with 100%
infected files ... 134
Table 49: The GA Matching results ... 135
Table 50: The GA Detection Rate of the GA matching Results 136
Table 51: The comparison according to the Mean fitness and the ∆ Mean fitness 137
Table 52: The Detection Speed summary ... 144

www.manaraa.com

XII

List of Abbreviations
AIS Artificial Immune System
ALCFG Arbitrary Length of Control Flow Graph
APCs Antigen Presenting Cells
ANN Artificial Neural Networks
CD Compact Disc
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DoS Denial of Service
DVD Digital Video Disc or Digital Versatile Disc
EC Evolutionary Computation
Fat multiplying factor
GA Genetic Algorithm
ICSA Immune Clonal Strategy Algorithm
IS Immune System
LAN Local Area Network
MHC Major Histocompatibility Complex
NK Natural Killer
NGVCK Next Generation Virus Creation Kit
NOP No Operation
PC Personal Computer
Pm Hypermutation probability
REALGO REtrovirus ALGOrithm
ROC Receiver Operating Characteristic
RNA Ribonucleic Acid
SMS Short Message Service
USB Universal Serial Bus
VCL Virus Creation Laboratory
VDC Virus Detection Clonal
XOR eXclusive OR

www.manaraa.com

XIII

Virus Detection
Using Artificial Immune System

with Genetic Algorithm

Prepared by: Suha M. A. Afaneh

Supervisors: Prof. Alaa Al-Hmami
 Prof. Raed Abu Zitar

Abstract

The protection against viruses is becoming increasingly difficult day by day, and

they form risks on every one who uses computers, especially large companies

and institutions. The viruses' intelligence is accumulated with time, and their

signatures are changing continuously, which has made the Anti-viruses mission

more complicated. Consequently, the issue of detecting viruses has been

considered a hot and important topic.

This dissertation aims to develop an algorithm, which is based on the concepts

of the Artificial Immune System to detect viruses.

Several studies have been concerned with the Artificial Immune System, which

is inspired by the natural immune system of humans and animals. This subject is

relatively considered recent, and is not matured yet. This system has been

applied in different fields, most importantly viruses.

An algorithm has been suggested in this dissertation, which is based on the

Artificial Immune System. A clonal selection Algorithm has been developed to

detect viruses, which has been written, programmed and called the Virus

detection Clonal (VDC) algorithm.

The VDC algorithm consists of three basic steps: cloning, Hypermutation and re-

selection stochastically. Within the step of the reselection stochastically; there lay

the virus’s detection process, where the viruses’ signatures are matched with the

files.

The developed VDC algorithm is subjected to testing of two phases; training and

matching. Two main parameters are determined; one of them is setting the

number of signatures per clone (Fat), while the other defines the Hypermutation

probability (Pm).

www.manaraa.com

XIV

Later on the researcher used Genetic Algorithm as a tool, to improve the

developed algorithm in searching the values of the main parameters (Fat and

Pm) to reproduce better results.

The dissertation results have shown that the detection rate of viruses, by using

the developed algorithm, is 94.4%. As for the detection rate of false positives, it

has reached 0%. These rates are confirmed by the Genetic Algorithm.

The Dissertation has concluded that the developed algorithm (VDC), which is

created to detect viruses, is good, and can be used in this field. The researcher

has recommended that the developed algorithm can be utilized to be applied on

other types of Malware that have signatures.

www.manaraa.com

XV

Arabic Abstract

www.manaraa.com

XVI

www.manaraa.com

1

Chapter One
 Introduction

1.1 Introduction
Over the last few decades, there has been an ever increasing interest in the area

of the biological inspired systems; such as Artificial Neural Networks (ANN),

Genetic Algorithms (GA), Evolutionary Computation (EC), and Artificial Immune

System (AIS). The AIS is relatively recent innovation, and its main idea is to build

a system based on the immune system in human beings and other animals.

The biological immune system is a massively parallel system, which is robust,

complex, and adaptive system, which is able to deal with changes in individual

bodies, changes in environment, and even to adapt rapidly by defending the body

from the foreign pathogens (infection elements such as microbes, virus, bacteria,

tumor cells, … etc).

There are two inter-related systems by which the body identifies foreign

pathogens: the innate immune system and the adaptive immune system. The

innate immune system is so called because the body is born with the ability to

recognize certain microbes and immediately destroy them. The innate immune

system can destroy many pathogens on first encounter. The adaptive immune

system enables the body to recognize and respond to any pathogen, even if it

has never faced the invader before. "The most important aspect of innate immune

recognition is the fact that it induces the expression of co-stimulatory signals in

Antigen Presenting Cells (APCs) that will lead to T cell activation, promoting the

start of the adaptive immune response" [Castro, 2000a, Castro, 2002b and Aickelin

,2004].

The tissues and organs that compose the immune system are distributed

throughout the body. They are known as lymphoid organs, which can be divided

into primary (or central), responsible for the production of new lymphocytes, and

secondary (or peripheral) where the lymphocyte repertoires match pathogen's

antigen (each pathogen has a specific receptors called antigens).

The immune system's characteristics have been exploited to build algorithms,

called AIS. The AIS is a diverse area of research that attempts to bridge the gap

between immunology and engineering, and is developed through the application

www.manaraa.com

2

 of techniques, such as mathematical and computational modeling of

immunology, abstraction from those models into algorithm (and system) design

and implementation in the context of engineering. The AIS has become known

as an area of computer science and engineering that uses immune system

metaphors for the creation of novel solutions to problems, so it is a type of

optimization algorithm inspired by the principles and processes of the vertebrate

immune system. The AIS has several concepts: Clonal Selection, Negative

Selection, and Network Immune Theory. This research deals with the clonal

selection algorithm and more precisely the CLONALG, "which is primarily derived

to perform machine-learning and pattern recognition tasks, and it is adapted to

solve optimization problems, emphasizing multimodal and combinatorial

optimization" [Castro, 2002b].

The AIS is used in many applications; such as Pattern recognition, Robotics,

Control, Optimization, Learning, and Virus Detection. This research

concentrates on the last mentioned application, which is virus using the clonal

selection algorithm.

In 1984, mathematician Dr. Frederick Cohen introduced the term "computer virus

"; therefore he became the "father" of computer viruses because of his early

studies of them. Cohen introduced the computer virus based on the

recommendation of his advisor, Professor Leonard Adleman, who picked the

name from science fiction novels. Cohen's informal definition of a computer virus

was: "A virus is a program that is able to infect other programs by modifying them

to include a possibly evolved copy of itself" [Cohen, 1984]. The virus is one type

of malware, while the malware is a variety of forms of hostile, intrusive, or

annoying software or program code. Malware includes (beside computer viruses)

worms, Trojan horses, logic bombs, backdoor, and other malicious and unwanted

software. This research refers to all types of malware as it does with computer

viruses. They can be harmless, such as a message on the screen, or damaging,

such as the destruction of programs and data files.

http://en.wikipedia.org/wiki/Computer_worm
http://en.wikipedia.org/wiki/Trojan_horse_%28computing%29

www.manaraa.com

3

The most common and straightforward method of preventing viral attacks on the

network is virus signature technology. Virus signature databases have doubled

or tripled over the past few years to keep up with the ever-increasing volume of

malware; unfortunately, new viruses still get through, no matter how large the

signatures become, or how fast they are updated.

Virus signature technology, despite the inherent limitation, is still an important

part of the anti-virus strategy, and makes up a significant part of the defense, but

having only a single line of defense is a very risky position. The vulnerability of

virus signature technology is that it must be supplemented—not replaced—with

complementary technologies to make sure that every possible attack vector is

covered, preferably on multiple fronts. The inherent limitation of virus signatures

is that it requires new viruses to be caught, included in the database, and updated

on each individual system. There is a natural time lag between when a virus is

first released into the wild, and when it is included in the database. There may be

an additional time lag between when it is included in the database, and the

individual enterprise updates their system [Secure, 2008].

This research proposes an artificial algorithm to fight viruses adaptively using the

characteristics of our immune system, and then to optimize the parameters using

the GA, which is "a search technique used in computing to find exact or

approximate solutions to optimization and search problems. Genetic algorithms

are categorized as global search heuristics" [Wikipedia, 2010].

This research shall be useful for antivirus companies and other researchers who

are interested in this field.

1.2 The Statement of the Problem

It is getting harder everyday to protect the data from the dangers posed by

computer viruses. These malicious programs have evolved into multiple forms

and can be contracted through a variety of ways, including opening email

attachments, opening spam, visiting corrupt websites, or they can be transferred

via a Local Area Network (LAN). Such software has been used to compromise

computer systems, to destroy their information, and to render them useless. It

has been also used to gather information, such as passwords and credit card

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Categorize
http://en.wikipedia.org/wiki/Global_optimization

www.manaraa.com

4

numbers, and to distribute information, all without the knowledge of the system’s

users. As more and more novice users obtain sophisticated computers with high-

speed connections to the Internet, the potential for further abuse is great. One

shortcoming is that we must obtain a copy of a malicious program before

extracting the pattern necessary for its detection. Obtaining copies of new or

unknown malicious programs usually entails them to infect or attack a computer

system. To complicate matters, writing malicious programs has become easier:

there are virus kits freely available on the Internet. Individuals who write viruses

have become more expert, often using mechanisms to change or obfuscate their

code to produce so called polymorphic viruses. Indeed, researchers have

recently discovered that simple obfuscation techniques foil commercial programs

for virus detection. These challenges have prompted some researchers to

investigate learning methods for detecting new or unknown viruses, and more

generally, malicious code.

As all manner of information migrate online, malware has kept on track to become

a huge source of individual threats. As security professionals close off points of

access, attackers develop more sophisticated attacks in a continuously evolving

game of cat and mouse. Today, profit models from malware are comparable to

any seen in the legitimate world. But there is hope. Some studies have shown

that while 25% of consumers facing Personal Computers (PCs) are infected by

some sort of malware, the infection rate of the commercial PC sector is around

half that rate. This difference is most likely a direct result of the efforts of security

professionals working in commercial sites to defend against these threats

[Creeger, 2010].

As mentioned previously, the computer viruses become cleverer day after day,

and their signatures are varying continuously, so detecting them is becoming

harder by the antivirus, as well, the signatures' databases and knowledge bases

are enormously increasing, hence, they are not sufficient. Therefore, the problem

of virus detection is a hot key issue. This research proposes an artificial solution

to fight computer viruses adaptively, using the characteristics of the proposed

immune system by producing a Virus Detection Clonal (VDC) algorithm, and then

to optimize the parameters using the GA.

www.manaraa.com

5

Figure (1) illustrates the major steps of the research. Building the VDC algorithm

includes the design, implementation and testing of the algorithm. After that, the

VDC algorithm is tuned by using the GA. This step includes the optimization and

testing. The detailed steps are described in chapter three.

Figure 1: Major steps of the research

1.2.1 Research Questions
This research answers the following questions, which are related to the statement

of the problem:

1) Will the proposed algorithm – the Virus Detection Clonal (VDC)

algorithm be good in detecting computer viruses?

2) Will the tuning process by GA improve the VDC algorithm accuracy, and

speed or not?

3) Are the VDC and GA applicable for solving the problem of computer

viruses detection?

Building the Virus Detection
Clonal (VDC) algorithm

Building the VDC algorithm
based on GA

www.manaraa.com

6

1.2.2. Definitions

The Immune System (IS):

It can be defined as a complex of cells, molecules and organs that represent an

identification mechanism capable of perceiving and combating dysfunction in our

own cells (infectious self) and the action of exogenous infectious microorganisms

(infectious non-self). The interaction among the IS and several other systems and

organs allows the regulation of the body and guaranteeing its stable functioning

[Castro, 1999].

The Artificial Immune System (AIS):

Artificial immune systems can be defined as an abstract or metaphorical

computational systems developed using ideas, theories, and components,

extracted from the immune system (Natural). Most AIS aim at solving complex

computational or engineering problems, such as pattern recognition, elimination,

and optimization [Castro, 2002b].

Virus:

A computer virus is a computer program that can copy itself and infect a computer

without permission or knowledge of the user [Wikipedia, 2010].

Anti-virus:

Antivirus software is a computer program that attempts to identify, neutralize or

eliminate malicious software (malware) [Wikipedia, 2010].

Genetic Algorithm (GA):

A Genetic Algorithm (GA) is a search technique used in computation to find exact

or approximate solutions (supervised or unsupervised) to optimization and search

problems. Genetic algorithms are categorized as global search heuristics.

Genetic algorithms are a particular class of evolutionary algorithms (EA) that use

techniques inspired by evolutionary biology such as inheritance, mutation,

selection, and crossover [Wikipedia, 2010].

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Malicious_software
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Categorize
http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Evolutionary_biology
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

www.manaraa.com

7

1.2.3 Thesis Contributions
The contribution of this research resides in the modernity of this field. Scientists

have been interested in the AIS in the past few years. Although the virus problem

is old, it has been considered as a progressing problem and very important since

it affects every individual that uses computers. This means that millions of users

are involved. Besides, the international studies consider it as an immature topic

[Garrett, 2005]. So this research is about:

1) Producing virus detection algorithm which is called VDC algorithm that

employs the Clonal selection algorithm illustrated in Figure (2), using

signature scanner method.

2) Optimizing the parameters, that are used as the population strings in the

GA, to increase the accuracy of the detection algorithm.

Figure 2 : The Basic Algorithm of Clonal Selection

 [EPSRC, 2008]

The AIS is still immature as a tool that can be efficiently used to learn and discover

solutions for narrow domain knowledge based problems. Few works have been

done on tuning this AIS and optimizing its performance, especially on the Clonal

Selection algorithm, and more precisely to be used with virus detection. A

challenging application such as the viruses' detection is a suitable benchmark for

testing the tuned AIS compared to standard AIS. Moreover, the AIS lack formal

description and stochastic analysis that helps in understanding the nature of this

www.manaraa.com

8

real life adopted algorithm. The AIS optimizer is the GA that is a general-purpose

optimization algorithm, which can be hybridized with the AIS to come up with

efficient dynamic machine learning tool.

The negative selection algorithm (the self-non-self algorithm) has been used for

virus detection [Forrest, 1994, Kephart, 1994a, D'haeseleer, 1996, Hang, 2005, Edge,

2006, Pietzowski, 2006 and Yu, 2009]. On the other hand, the clonal selection

algorithm has not been used with this application yet, as according to the

researcher knowledge, after searching the internet and the specialized journals.

Thus, applying the clonal selection algorithm with virus detection is a brand new

contribution.

The clonal selection principle describes the basic features of an immune

response to an antigenic stimulus. It establishes the idea that only those cells that

recognize the antigen proliferate, thus being selected against those that do not.

The main features of the clonal selection theory are that: New cells are (cloned)

copies of their parents, subject to a mutation mechanism (Hypermutation), Self-

reactive cells are eliminated, and Proliferation and differentiation of mature cells

on contact with antigens. When an antibody strongly matches an antigen the

corresponding B-cell is stimulated to produce clones of itself that then produce

more antibodies [Aickelin, 2004]. In this work the antigens is the computer viruses

inside the infected files and the antibodies are the signatures. The signatures with

high matching values (fitness) are selected to have the Cloning and the

Hypermutation and the reselection processes; so that the cloning makes copies

for the signatures with best fitness, then they are mutated to provide the ability of

detecting viruses which are different in some genes, even if they did not attack

previously (to defend adaptively). And in this research the reselection

stochastically is added to the Clonal Selection Algorithm to guarantee choosing

the best mutated signatures to be added to the signatures' pool.

1.3 The Thesis Structure
This thesis includes six chapters, where chapter one views the introduction of the

research problem, its questions, the contribution of the research and the

definitions of the main terminologies used in it. Chapter two presents the literature

www.manaraa.com

9

review with the explanation of the Immune System, the Artificial Immune System,

the viruses and their classifications, the antivirus and the Genetic Algorithm. After

that, the related works which includes studies on the Artificial Immune System

and the computer viruses, then studies that combine them together, are reviewed.

Chapter three demonstrates the employed algorithm, how it is developed to be

used in virus detection, the strategies that have been utilized in algorithm testing,

and the optimization using GA. The results and analysis extracted from the testing

of the algorithm are displayed in chapter four, while the results and analysis

derived from the optimization using the GA are presented in chapter five. Finally

chapter six includes the conclusions and recommendations for future researches.

www.manaraa.com

11

Chapter Two
Literature Reviews and Related Works

This chapter includes two main sections: first, literature reviews, second, related

works. In the literature reviews part there is an explanation of the following topics:

the Immune System (IS) in the humans and animals, the Artificial Immune System

(AIS), the viruses, the antivirus and the Genetic Algorithm (GA).

 The immune system part considers its components such as cells and secretions,

the basic defense mechanism, the antibodies and their role in the immune

system, and finally the affinity definition.

The artificial immune system part handles its definition and the main following

concepts: the negative selection, the clonal selection, and the network theory.

When it comes to the viruses, some of the subjects are included like the virus

phases, the virus structure, the virus types, and the virus signature. The antivirus

is defined, and then the generations are listed. After that the genetic algorithm

part reviews its definition, and describes the main steps to perform it.

The second section demonstrates the related works, as some of these studies

have explained the AIS; in regard to developing the AIS algorithms, applying them

in different fields or optimizing them by GA. Some of the studies are interested in

the extraction of new good viruses' signatures or proposing methods or

techniques to detect viruses. The rest of the studies in this section are concerned

with the AIS in the field of virus detection, as new algorithms or systems are

proposed to detect viruses using the negative selection algorithm.

2.1. Literature Reviews

This section gives a brief description for the immune system, the artificial immune

system, the viruses, the anti viruses and the genetic algorithm.

2.1.1. The Immune System (IS)

It can be defined as a complex of cells, molecules and organs that represent an

identification mechanism capable of perceiving and combating the dysfunction in

our own cells (infectious self) and the action of exogenous infectious

www.manaraa.com

11

microorganisms (infectious non-self). The interaction among the IS and several

other systems and organs allows the regulation of the body, and guaranteeing its

stable functioning.

The immune system is composed of a tremendous variety of cells and secretions;

which are complement, phagocytes, granulocytes and their relatives, and

lymphocytes. The lymphocytes can be divided into: B cells, T cells, and natural

killer cells. The T cells can be subdivided into three major subclasses: T helper,

T killer, and T suppressor, as illustrated in Figure (3).

Figure 3 : The cells and secretions of the immune system

The main functions of the B cells include the production and secretion of

antibodies as a response to pathogens. Each B cell is programmed to produce a

specific antibody. The antibodies are specific proteins that recognize and bind to

another particular protein. The production and binding of antibodies is usually a

way of signaling other cells to kill, ingest or remove the bound substance. The T

cells function includes the regulation of other cells’ actions and directly attacking

the host infected cells. The T helper cells are essential to the activation of all other

cells in the immune system. The T killer cells are capable of eliminating microbial

invaders, viruses or cancerous cells. Once activated, they inject noxious

chemicals into the other cells, perforating their surface membrane and causing

their destruction. The suppressor T lymphocytes are vital for the maintenance of

the immune response, as they inhibit the action of other immune cells, and

without their activity, immunity will certainly loose control resulting in allergic

reactions and autoimmune diseases. The Natural Killer cells (NK) constitute

another kind of lethal lymphocytes. Like the T killer cells, they contain granules

www.manaraa.com

12

filled with powerful chemicals. On the other hand, unlike the T killer cells, they do

not need to recognize a specific antigen before they start acting. They attack

mainly tumors and protect against a great variety of infectious microbes [Castro,

2000a].

Figure (4) presents a simplified version of the basic immune mechanisms of

defense through the following steps:

I. Specialized Antigen Presenting Cells (APCs), which are phagocytes, roam the

body, ingesting and digesting the antigens they find and fragmenting them into

antigenic peptides.

II. Pieces of these peptides are joined to Major Histocompatibility Complex (MHC)

molecules and are displayed on the surface of the cell. Other white blood cells,

called T cells, have receptor molecules that enable each of them to recognize

a different peptide-MHC combination.

Figure 4 : How the immune system defends the body

[Castro, 1999]

III. T cells activated by that recognition divide and secrete chemical signals that

mobilize other components of the immune system.

www.manaraa.com

13

IV. The B lymphocytes, which also have receptor molecules of a single specificity

on their surface, respond to those signals. Unlike the receptors of T cells,

however, those of B cells can recognize parts of the antigens free in solution,

without MHC molecules.

V. When activated, the B cells divide and differentiate into plasma cells that

secrete antibody proteins, which are soluble forms of their receptors.

VI. By binding to the antigens they find, antibodies can neutralize them or

precipitate their destruction by complement enzymes or by scavenging cells.

Some T and B cells become memory cells that persist in the circulation, and boost

the immune system’s readiness to eliminate the same antigen if it presents itself

in the future. Because the genes for antibodies in B cells frequently suffer

mutation and editing, the antibody response improves after repeated

immunizations, this phenomenon called affinity maturation [Castro, 1999].

The antibodies play a central role in the immune system. Antigens are diverse in

structure, forcing the antibody repertoire to get larger. The basic unit of an

antibody is composed of two regions; the variable region, or V-region, which is

primarily responsible for antigen recognition and contains particularly variable

sub-regions whose residues have been implicated in actual antigen contact. The

constant regions, or C-regions, these regions are responsible for a variety of

effector's functions, as illustrated in Figure (5).

Figure 5: Antibody molecule: V-region & C-region.

[Castro, 1999]

Affinity:

The interaction of an antibody and an antigen is evaluated via a distance

measured between their attribute strings; this measure distance is called affinity

measure. One of the following can measure the affinity:

www.manaraa.com

14

Euclidean distance

L

i

ii AgAbD
1

2
 …………………………………………… (2.1)

Manhattan distance

L

i

ii AgAbD
1

 …………………………………………… (2.2)

Hamming distance

L

i

ii

otherwise

AgAbif
whereD

1 0

1
; ………………………………. (2.3)

Where D is affinity between an antibody and an antigen, Abi is an antibody where

Ab= <ab1, ab2... abL>, Agi is an antigen where Ag= <ag1, ag2, ..., agL> [Castro, 1999].

2.1.2. The Artificial Immune System (AIS)
Artificial Immune System can be defined as "abstract or metaphorical

computational system that is developed using ideas, theories, and components,

extracted from the immune system. Most AIS aims to solve complex

computational or engineering problems, such as pattern recognition, elimination,

and optimization" [Castro, 2002b].

The AIS has several concepts: negative selection, clonal selection, and network

immune theory.

The Negative Selection:

The process of deleting self-reactive lymphocytes is termed clonal deletion, and

is carried out via a mechanism called negative selection that operates on

lymphocytes during their maturation. For T-cells, this mainly occurs in the thymus,

which provides an environment rich in antigen presenting cells that present self-

antigens. Immature T-cells that strongly bind these self-antigens undergo a

controlled death. Thus, the T-cells that survive this process shall be un-reactive

to self-antigens. The property of lymphocytes that do not react to the self is called

immunological tolerance.

http://en.wikipedia.org/wiki/Lymphocyte
http://en.wikipedia.org/wiki/T_cell
http://en.wikipedia.org/wiki/Thymus
http://en.wikipedia.org/wiki/Antigen_presenting_cells

www.manaraa.com

15

Negative selection algorithms are inspired by the main mechanism in the thymus

that produces a set of mature T-cells capable of binding only non-self antigens.

The first negative selection algorithm was proposed by Forrest et al (1994) to

detect data manipulation caused by a virus in a computer system. The starting

point of this algorithm is to produce a set of self-strings, S, that define the normal

state of the system. The task then is to generate a set of detectors, D, that only

bind/recognize the complement of S, as illustrated in Figure (6). These detectors

can then be applied to new data in order to classify them as being self or non-self

[Castro, 2001, Castro, 2002a and EPSRC, 2008].

Figure 6: The Basic Algorithm of Negative Selection

 [EPSRC, 2008]

The Clonal Selection:

When stimulated, a B cell proliferates and secretes its receptor molecules as free

antibodies. Antibodies thus can either be free or receptors attached to cells.

Secretion requires that B cells become activated, undergo proliferation (cloning)

and finally differentiate into plasma and memory cells. A clone is a cell, or a set

of cells, which are the progeny of a single cell. A plasma cell is the one capable

of secreting antibody with high rates, and a memory cell is the cell with high

affinity with the antigen that will be rescued for a faster and stronger response to

a previously seen (or related) antigen. Those cells that recognize antigens grow

in concentration and affinity (affinity maturation), while those that do not die out.

http://www.cs.unm.edu/~immsec/publications/virus.pdf

www.manaraa.com

16

 This basic process of pattern recognition and selection is known as clonal

selection and is similar to natural selection, except that it occurs on a rapid time

scale on the order of days or weeks, within our bodies, as illustrated in Figure (7)

[Castro, 2000a, and Castro, 2002a].

There are two important features of affinity maturation in B-cells that can be

exploited from the computational viewpoint. The first one is that the proliferation

of B-cells is proportional to the affinity of the antigen that binds it, thus the higher

the affinity, the more clones produced. Secondly, the mutations suffered by the

antibody of a B-cell are inversely proportional to the affinity of the antigen it binds.

When applied to pattern matching, a set of patterns, S, to be matched are

considered to be antigens. The task is to then produce a set of memory

antibodies, M, that match the members in S. This is achieved via the algorithm of

Figure (2) [EPSRC,2008].

The clonal selection principle is used to explain the basic features of an adaptive

immune response to an antigenic stimulus. It establishes the idea that only those

cells that recognize the antigens are selected to proliferate. The selected cells

are subject to an affinity maturation process, which improves their affinity to the

selective antigens [Castro, 2002b].

Figure 7: The Clonal selection

[Castro, 2000a]

The Network Theory:

The immune network theory helps to explain some of the observed emergent

properties of the immune system, such as learning and memory.

http://www.physics.ubc.ca/~hoffmann/ni.html

www.manaraa.com

17

The premise of immune network theory is that any lymphocyte receptor within an

organism can be recognized by a subset of the total receptor repertoire. The

receptors of this recognizing set have their own recognizing set and so on, thus

an immune network of interactions is formed. Immune networks are often referred

to as idiotypic networks. In the absence of foreign antigen, the immune system

must display a behavior or activity resulting from interactions with itself, and from

these immunological behavior interactions such as tolerance and memory

emerge, as illustrated in Figure (8) [EPSRC, 2008].

The antibody molecules recognize a portion of the antigen called epitope. An

idiotype is defined as the set of epitopes displayed by the variable regions of a

set of antibody molecules, and an idiotope is each single idiotypic epitope. While

each B cell is known to have a single type of antibody, antigens typically have

several different types of epitopes, and can be recognized by several different

antibodies.

http://en.wikipedia.org/wiki/Idiotypes

www.manaraa.com

18

Figure 8: The Basic Algorithm of Network Theory
[EPSRC, 2008]

The antibody portion responsible for matching (recognizing) an antigen is called

paratope, also known as V-region, for variable regions. It is variable because it

can alter its shape to achieve a better match with a given antigen. The strength

and specificity of the Ag-Ab interaction is measured by the affinity of their match.

As illustrated in Figure (9) [Castro, 2000a and Castro, 2002a].

www.manaraa.com

19

Figure 9: Idiotopic Network

[Castro, 1999]

2.1.3. The Viruses

Virus is a computer program written by a person that attaches itself to a program,

propagates copies of itself to other programs, and infect any computer without

the permission or knowledge of the user. The virus can spread when its host is

taken to the target computer either by being sent over a network or the Internet,

or carried on a removable medium such as a floppy disk, CD, DVD, or USB drive.

Malware is software that is intentionally included or inserted in a system for a

harmful purpose. The term "virus" is also commonly but erroneously used to refer

to other types of malware. These types are listed in Appendix D.

This research deals with viruses. A computer virus carries in its instructions code

the recipe for making copies of it-self. The typical virus becomes embedded in a

program on a computer. Then, whenever the infected computer comes into

contact with an uninfected piece of software, a fresh copy of the virus passes into

the new program. Thus, the infection can be spread from computer to computer

by unsuspecting users who either swap disks or send programs to one another

over a network. In a network environment, the ability to access applications and

systems services on other computers provides a perfect culture for the spread of

virus.

http://en.wikipedia.org/wiki/Floppy_disk
http://en.wikipedia.org/wiki/Compact_Disc
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/USB_flash_drive
http://en.wikipedia.org/wiki/Malware

www.manaraa.com

21

A virus can do anything that other programs do. The only difference is that it

attaches itself to another program and executes secretly when the host program

is run. Once the virus is executing, it can perform any function, such as erasing

files and programs.

During its lifetime, a typical virus goes through the following phases:

1. Dormant phase - the virus is idle

2. Propagation phase - the virus places an identical copy of itself into other

programs

3. Triggering phase – the virus is activated to perform the function for which

it is intended

4. Execution phase – the function is performed.

A virus can be pre-pended or post-pended to an executable program, or it can be

embedded in some other fashion. The key to its operation is that the infected

program, when invoked, will first execute the virus code and then execute the

original code of the program.

A very general depiction of virus structure is shown in Figure (10). In this case,

the virus code, V, is pre-pended to infected programs, and it is assumed that the

entry point to the program, when invoked, is the first line of the program [Stalling,

2007].

An infected program begins with the virus code and works as follows: the first line

of code is a jump to the main virus program. The second line is a special marker

that is used by the virus to determine whether a potential victim program has

already been infected with this virus. When the program is invoked, control is

immediately transferred to the main virus program. The virus program first seeks

out uninfected executable files and infects them. Next, the virus may perform

some action, usually detrimental to the system. This action can be performed

every time the program is invoked, or it can be a logic bomb that is triggered only

under certain conditions. Finally, the virus transfers control to the original

program. If the infection phase of the program is reasonably rapid, a user is

unlikely to notice any difference between the execution of an infected and

uninfected program.

www.manaraa.com

21

Figure 10: A simple virus structure

[Stalling,2007]

There has been a continuous arms race between virus writers and writers of

antivirus software since viruses first appeared. As effective countermeasures are

developed for existing types of viruses, new types have been developed. The

following categories are suggested as being among the most significant types of

viruses:

- Parasitic virus: the traditional and still most common form of virus. A

parasitic virus attaches itself to the executable files and replicates, when the

infected program is executed, by finding other executable files to infect. As

shown in Figure (11) such viruses overwrite the top of the host with their own

code and save the top of the original host program in the end, usually virus-

size long.

www.manaraa.com

22

Figure 11: A classic parasitic virus

[Szor,2005]

- Memory-resident virus: a virus which remains in the memory after the

initialization of the virus code, and infects every program that is executed in

the main memory.

- Boot sector virus: a virus which infects a master boot record or boot record

and spreads when a system is booted from the disk containing the virus.

Knowing that today the boot infection technique is rarely used.

- Stealth virus: a virus is explicitly designed to hide from detection by antivirus

software, by intercepting the anti-virus software’s request to read the file and

passing the request to the virus, instead of the operating system. The virus

can then return an uninfected version of the file to the anti-virus software, so

that it seems that the file is benign.

- Polymorphic virus: a virus that mutates with every infection, making

detection by the "signature" of the virus impossible; it creates copies during

replication that are functionally equivalent, but have distinctly different bit

patterns. In this case, the "signature" of the virus varies with each copy. To

achieve this variation, the virus may randomly insert superfluous instructions,

or interchange the order of independent instructions. Encryption is the most

common method to hide a code. With encryption, the main body of the code

(also called its payload) is encrypted and appears meaningless. For the code

to function as before, a decryption function is added to the code. When the

http://en.wikipedia.org/wiki/Operating_System
http://en.wikipedia.org/wiki/Encryption

www.manaraa.com

23

- code is executed this function reads the payload and decrypts it before

executing it in turn. Encryption alone is not polymorphism. To gain

polymorphic behavior, the encryptor/decryptor pair is mutated with each copy

of the code. This allows different versions of some code while all functions the

same. Polymorphic viruses can mutate their decryptors to a high number of

different instances that can take millions of different forms; this means that the

Virus writers usually waste time to create a new polymorphic virus. While a

researcher is able to deal with the detection of such virus in a shorter time.

"There are a surprisingly low number of efficient external polymorphic

engines" [Szor, 2005].

- Metamorphic virus: as with a polymorphic virus, a metamorphic virus

mutates with every infection. The difference is that a metamorphic virus

rewrites itself completely in each iteration, increasing the difficulty of

detection. While, polymorphic virus ciphers its original code to avoid pattern

recognition. Metamorphic viruses may change their behavior as well as their

appearance. Often, it does this by translating its own code into a temporary

representation, editing the temporary representation of itself, and then writing

itself back to a normal code again. This procedure is done with the virus itself,

and thus also the metamorphic engine itself undergoes changes. This is used

by some viruses when they are about to infect new files, and the result is that

the "children" will never look like their "parents".

- Virus-creation toolkit: a tool which enables non-expert users to create

quickly a number of different viruses. Although viruses created with toolkits

tend to be less sophisticated than viruses designed from scratch, the absolute

number of new viruses that can be generated creates a problem for antivirus

schemes.

- Macro Viruses: a macro is an executable program that is written in a macro

language; which is usually some form of a basic programming language. The

macro virus takes advantage of a feature found in office applications, so that

the programs may run automatically when the document is opened.

Successive releases of Office provide increased protection against macro

viruses; hence, they no longer are an epidemic viruses' threat.

http://en.wikipedia.org/wiki/Macro_(computer_science)
http://en.wikipedia.org/wiki/Programming_language

www.manaraa.com

24

- E-Mail Viruses: an email virus is rapidly spreading virus via emails, they can

make use of Microsoft Word macro embedded in an attachment. If the

recipient opens the e-mail attachment, the Word macro is activated. Then the

e-mail virus sends itself to everyone on the mailing list in the user's e-mail

package, and then the virus does local damage. Or they can be activated

merely by opening an e-mail that contains the virus rather than opening an

attachment. The virus uses the visual Basic scripting language supported by

the e-mail package.

Virus signature:

Signature is a characteristic byte-pattern that is a part of a certain virus, or family

of viruses, or short identifiers which consist of sequences of bytes in the machine

code of the virus. "A good signature is one that is found in every object infected

by the virus" [Kephart, 1994b].

In the antivirus world, a signature is an algorithm or hash (a number derived from

a string of text) that uniquely identifies a specific virus. Depending on the type of

scanner being used, it may be a static hash which, in its simplest form, is a

calculated numerical value of a snippet of code unique to the virus. Or, less

commonly, the algorithm may be behavior-based, i.e. if this file tries to do X, Y,

Z, they must be flagged as suspicious and prompt the user for a decision.

Depending on the antivirus vendor, a signature may be referred to as a signature,

a definition file, or a DAT file.

A single signature may be consistent among a large number of viruses. This

allows the scanner to detect a brand new virus that has never even seen before.

This ability is commonly referred to as either heuristics or generic detection. The

ability to detect heuristically or generically is significant, given that most scanners

now include in excess of 250k signatures, and the numbers of new viruses being

discovered continues to increase dramatically year after year.

The reoccurring need to update each time a new virus is discovered, because

new signatures must be created. This new virus may not be detectable by an

existing signature, or may be detectable but cannot be properly removed,

because its behavior is not totally consistent with previously known threats. After

the new signature has been created and tested by the antivirus vendor, it is

www.manaraa.com

25

 pushed out to the customer in the form of signature updates. These updates add

the detection capability to the scan engine. In some cases, a previously provided

signature might be removed or replaced with a new signature to offer better

overall detection or disinfection capabilities.

Depending on the scanning vendor, updates may be offered hourly, or daily, or

sometimes even weekly. This period depends on the scanner type. For example,

adware and spyware are not nearly as prolific as viruses, thus typically an

adware/spyware scanner may only provide weekly signature updates (or even

less often). Conversely, a virus scanner must contend with thousands of new

threats discovered each month and therefore, signature updates should be

offered at least daily.

Of course, it is simply not practical to release an individual signature for each new

virus discovered, thus antivirus vendors tend to release on a set schedule,

covering all of the new malware they have encountered during that time frame. If

a particularly prevalent or menacing threat is discovered between their regularly

scheduled updates, the vendors will typically analyze the malware, create the

signature, test it, and release it out-of-band (which means, release it outside of

their normal update schedule) [Landesman, 2008].

2.1.4. The Anti-virus
Antivirus software is a computer program that attempts to identify, neutralize or

eliminate malicious software (malware) [Wikipedia, 2010].

According to Stalling (2007) there are four generations of antivirus software:

First generation: simple scanners.

Second generation: heuristic scanners.

Third generation: Activity Traps.

Fourth-generation: full-featured protection.

These generations are described briefly in appendix E.

http://antivirus.about.com/mbiopage.htm
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Malicious_software

www.manaraa.com

26

2.1.5 Genetic Algorithm
Goldberg (1989) described Genetic Algorithms as: search procedures based on

the mechanism of natural selection and natural genetics, i.e. "they are general

search and optimisation algorithms that use the theories of evolution as a tool to

solve problems in science and engineering. This creates an evolving spopulation

of candidate solutions to the particular problem, using operations inspired by

natural genetic variation and natural selection". Figure (12) illustrates the main

four steps for this algorithm.

Figure 12: The Genetic Algorithm flowchart

Initialization

Initially many individual solutions are randomly generated to form an initial

population. The population size depends on the nature of the problem, but

typically contains several hundreds or thousands of possible solutions.

Traditionally, the population is generated randomly, covering the entire range of

possible solutions (the search space). Occasionally, the solutions may be

"seeded" in areas where optimal solutions are likely to be found.

www.manaraa.com

27

Reproduction

Reproduction is a process in which individual strings are copied according to their

fitness function values; the strings with higher values have higher probability of

contributing in the next generation.

The probability of a string to be selected is:

n

j

jF

iF
iP

1

 ………………………………………….... (2.4)

Where: iP : is the probability that the ith candidate string is selected.

 iF : is the fitness of the ith string.

n: is the total number of strings in the population.

The strings with higher probability are copied to the new population with the same

number of strings in the current population.

Crossover

Each pair of the selected strings is subjected to the probability of crossover (pc),

by selecting two strings randomly as two parents, then choosing a random integer

number (between 1 and l-1; where l is the length of string). As an example,

consider the following two strings with the integer number 4.

00001110

11110110

2

1

A

A

The bits up to this point (4) in the first individual get swapped with the

corresponding bits from the second individual, to form two new strings

11111110

00000110

2

1

A

A

This way is a single-point crossover. There is another way by choosing a number

of crossover points randomly. The bits between every second grouping of bits

(i.e. bits between every second crossover point) are swapped between two

individuals to produce the new strings. This is called Multi-point crossover.

Mutation

As in crossover, the mutation operator also has the effect of creating new

population members. It can help creating strings that will not otherwise be formed

www.manaraa.com

28

by selection and crossover alone. The mutation simply means changing a 1 to 0

and vice versa according to a small probability (pm), and it is usually (~ 0.001).

Each iteration of this process is called a generation. The entire set of generations

is called a run. The fittest member over the entire run is typically taken as the

required solution.

In this research the GA is used to tune parameters of the AIS system.

2.2. Related Works

The related studies are classified into three parts: the artificial immune system,

the computer virus, and the computer virus with AIS.

2.2.1. Studies about the Artificial Immune System
Castro and Zuben have published many papers in this subject. In their paper in

2000 they explored basic aspects of the immune system, and proposed a novel

immune network model with the main goals of clustering and filtering redundant

data from problems described by a set of discrete samples. Their concern was to

show that immune concepts could be used to develop novel computational tools

for data processing. As important results of their model, the network evolved was

capable of reducing redundancy, describing data structure, shapes and their

cluster inter-relations [Castro, 2000a]. Also in their paper in 2002, they proposed a

computational implementation of the clonal selection principle that explicitly took

into account the affinity maturation of the immune response. The general

algorithm, named CLONALG, was primarily derived to perform machine-learning

and pattern recognition tasks, and then it was adapted to solve optimization

problems, CLONALG was also contrasted with evolution strategies and genetic

algorithms [Castro, 2002b].

Castro and Timmis (2002) work introduced AIS as computational intelligence

paradigm to perform pattern recognition. And they concluded a comparison

between AIS and artificial neural networks as pattern recognition paradigms.

They reviewed three classes of artificial immune system algorithms to perform

www.manaraa.com

29

pattern recognition: 1) negative selection, 2) clonal selection, and 3) immune

network models. In negative selection, a pattern recognition system was

designed by learning information about the complement set of the patterns to be

recognized. Clonal selection algorithms learnt to recognize patterns through an

evolutionary-like procedure. Finally, immune network models were peculiar

because they carried information about the patterns to be recognized and, also,

they had knowledge of themselves, i.e., a notion of self-identification. All

algorithms were population based with the knowledge distributed among the

components of the system.

According to Castro and Timmis, Most computational immunology algorithms,

which composed particular cases of artificial immune systems, were based upon

the negative selection algorithm to protect computers and networks of computers

from viruses, unauthorized users, etc. Additionally, the application of other

models, including the immune network and clonal selection algorithms, to other

types of pattern recognition applications, such as character recognition, data

analysis, clustering and classification were discussed. Then it was followed with

a theoretical comparison between artificial immune systems and neural network

models for pattern recognition. Aspects such as the basic units composing each

system, their respective types of adaptation mechanisms, the types of memory

presented, and how they presented generalization capabilities were stressed.

In Yang's paper (2006), he investigated several GAs inspired by the ideas of

biological immune system and transformation schemes for dynamic optimization

problems. Diversity and memory were mechanisms integrated into genetic

algorithms to enhance their performance for problem optimization in dynamic

environments. Yang proposed an aligned transformation operator, and combined

it to the immune system based genetic algorithm to deal with dynamic

environments. Using a series of systematically constructed dynamic test

problems, experiments were carried out to compare several immune system

based genetic algorithms, including the proposed one, and two standard genetic

algorithms enhanced with memory and random immigrants respectively.

www.manaraa.com

31

In the paper of Liu et al (2006), they presented a novel artificial intelligent

algorithm, named Immune Clonal Strategy Algorithm (ICSA). The new immune

operator, Clonal Operator, inspired by the Immune System was discussed firstly.

Three different mutation mechanisms were used in ICSA; Gauss Mutation,

Cauchy Mutation, and Mean Mutation, and then based on these three methods a

comparison with Classical Evolutionary Strategy on a set of benchmark functions

was made, the numerical results showed that ICSA was capable of avoiding pre-

maturity, increasing the converging speed and keeping the variety of solutions.

The clonal operator is an antibody random map induced by the affinity including

three steps: clone, clonal mutation and clonal selection. Here, the affinity between

antibody and antigen are similar to the definitions of the objective function and

restrictive condition, the possible solution, match between solution and the fitting

function in AIS. They found that the essential of the clonal operator was producing

a variation population around the parents according to their affinity, and then the

searching area was enlarged. Compared with Classical Evolutionary Strategy,

ICSA was convergent faster and the diversity was much better.

2.2.2 Studies about Computer Viruses

In their paper, Kephart and Arnold (1994b) had developed a statistical method for

automatically extracting good signatures from the machine code of a virus. The

basic idea was to characterize statistically a large corpus of programs, and then

to use this information to estimate false-positive probabilities for proposed virus

signatures. In effect, the algorithm extrapolated from the corpus to the much

larger universe of executable programs that did or might exist. In practice,

signatures extracted by this method were very unlikely to generate false positives,

even when the scanner that had employed them permitted some mismatches.

That was accomplished in two phases. First, a set of signatures which were likely

to appear in each instance of the virus was generated. Second, one or a few

signatures that minimized the false-positive probability were chosen from this set.

www.manaraa.com

31

Chess and White in their paper for IBM Company (2000) pointed out that there

were computer viruses with no algorithms which could be detected. Every widely-

deployed virus detection program in use that day claimed to find a virus in at least

some non-viral objects (a false positive), because the methods used for detection

were approximate, based on the presence of a particular binary string in a certain

place, on the calculation of the finite-size checksum of a macro, on a certain

pattern of changes to a file, and so on. Producers of anti-virus software of course

tried to minimize the number of actual non-viral programs that were falsely

detected. But no one worried about the fact that the algorithms used to detect

viruses produced false positives on an enormous number of non-viral objects that

had never been presented on any actual user's computer.

According to Chess and White, acceptable virus detection, in the real world,

involves detecting all viable instances of the virus in question, and preferably

some number of minor variants of it, while falsely detecting the virus in only a

vanishingly small number of innocent programs that are actually present on a

computer somewhere. It is helpful to have a formal characterization of this more

realistic notion of detection; theorists in the area of computer virus protection may

usefully work toward such a characterization.

Kolter and Maloof (2006) described the use of machine learning and data mining

to detect and classify malicious executables as they appeared in the wild. They

gathered 1,971 benign (system and non-system executables) and 1,651

malicious executables and encoded each as a training example using n-grams of

byte codes as features. Such processing resulted in more than 255 million distinct

n-grams. After selecting the most relevant n-grams for prediction, they evaluated

a variety of inductive methods, including naive Bayes, decision trees, support

vector machines, and boosting. Ultimately, boosted decision trees outperformed

other methods with an area under the Receiver Operating Characteristic (ROC)

curve of 0.996. Results suggested that their methodology would scale to larger

collections of executables. They also evaluated how well the methods classified

executables based on the function of their payload, such as opening a backdoor

and mass-mailing. Areas under the ROC curve for detecting payload function

www.manaraa.com

32

 were in the neighborhood of 0.9, which were smaller than those for the detection

task. However, they attributed this drop in performance to fewer training

examples and to the challenge of obtaining properly labeled examples, rather

than to the failing of the methodology or to some inherited difficulty of the

classification task. Finally, they applied detectors to 291 malicious executables

discovered after they gathered their original collection, and boosted decision

trees which achieved a true-positive rate of 0.98 for a desired false-positive rate

of 0.05. This result was particularly important, for it suggested that their

methodology could be used as the basis for an operational system, for detecting

previously undiscovered malicious executables.

The paper of Preda et al (2007) took the position that the key to malware

identification lied in their semantics, not like the malware detectors that were

presented at that time which worked by checking for "signatures", and attempted

to capture (syntactic) the characteristics of the machine-level byte sequence of

the malware. This reliance on a syntactic approach made such detectors

vulnerable to code obfuscations, increasingly used by malware writers that

altered syntactic properties of the malware byte sequence without significantly

affecting their execution behavior. Therefore, they had proposed a semantics-

based framework for reasoning about malware detectors and proving properties

such as soundness and completeness of these detectors. Their approach used

trace semantics to characterize the behaviors of malware, as well as the program

being checked for infection, and used abstract interpretation to “hide” irrelevant

aspects of these behaviors.

Al Daoud et al (2009) proposed an efficient and novel method based on Arbitrary

Length of Control Flow Graphs (ALCFG) and similarity of the aligned ALCFG

matrix. They used the metamorphic viruses that were generated by two tools;

namely: Next Generation Virus Creation Kit (NGVCK0.30) and Virus Creation Lab

for Windows 32 (VCL32). The results showed that all the generated metamorphic

viruses could be detected by using the suggested approach, while less than 62%

were detected by well-known antivirus software.

www.manaraa.com

33

2.2.3. Studies about Computer Viruses with AIS
Forrest (1994) had worked on self and non-self discrimination in computer

viruses; he had proposed an algorithm of two phases: the first phase was

responsible for generating a set of detectors; where each detector was a string

that did not match any of the protected data. This censoring phase is illustrated

in Figure (13). The second phase was responsible for monitoring the protected

data by comparing them with the detectors. As shown in Figure (14).

Figure 13: Censoring - Generation of Valid Detector Set

[Forrest, 1994]

The matching process had not considered being in a perfect match manner, since

it was extremely hard to be found between strings of any reasonable length; a

partial matching rule had been needed. By using a matching rule that looked for

r contiguous matched between symbols in corresponding positions.

Figure 14: Monitor Protected Strings for Changes

[Forrest, 1994]

www.manaraa.com

34

In the system developed by Kephart (1994a), a set of antibodies that previously

did not encounter computer viruses or worms (agents) was generated so as to

promote a faster and stronger response to future infecting agents. He was also

concerned about minimizing the risk of an autoimmune response, in which the

computer immune system would mistakenly identify legitimate software as being

undesirable.

A particular virus was recognized via an exact or fuzzy match to a relatively short

sequence of bytes occurring in the virus (signature). The process by which the

proposed computer immune system established whether new software contained

a virus had several stages. Integrity monitors, which used checksums to check

for any changes to programs and data files, had a notion of self that was: any

differences between the original and current versions of any file were flagged, as

were any new program. However, evidence of a non-self entity was not by itself

enough to trigger a computer immune response. Mechanisms that employed the

complementary strategy of “knowing the enemies” were also brought into play.

The capture of a virus sample by decoy programs was somewhat analogous to

the ingestion of antigen by APCs. In the computer immune system, the infected

decoys were then processed by another component of the immune system, called

a signature extractor, so as to develop a recognizer for the virus.

The computer immune system had an additional task to attempt to extract from

the decoys information about how the virus attached to its host, so that infected

hosts could be repaired (if possible). Hence, the system automatically developed

both a recognizer and a repair algorithm appropriate to the virus.

Viral self-replication was dealt with self-replication, in the sense that, detection of

a virus by a single computer could trigger a wave of kill signals that propagated

along the path taken by the virus, destroying the virus in its wake. Figure (15)

depicts the main components and their respective function within the immune

system.

If a virus-like anomaly was detected by the immune system, the first response

would be to trigger a scan for known viruses. If the anomaly could not be

attributed to a known virus, the immune system would try to lure any virus that

www.manaraa.com

35

might be presented in the system to infect a diverse suite of decoy programs.

From time to time, each of the decoy programs was examined to see if it had

been modified. If one or more had been modified, it was almost certain that an

unknown virus was loose in the system, and each of the modified decoys

contained a sample of that virus. The next step would be to extract a signature

for the virus automatically. In addition, another automatic virus analysis tool under

development in laboratory would determine how the virus attached to host

programs, and extract information that would allow any program infected by the

virus to be repaired.

Figure 15: Kephart Immune System

[Kephart, 1994c]

Having automatically developed both a recognizer and a repair algorithm

appropriate to the virus, the information could be added to the corresponding

databases. If the virus was ever encountered again, the immune system would

recognize it immediately as a known virus. A computer with an immune system

www.manaraa.com

36

could be thought of as ill during its first encounter with a virus, since a

considerable amount of time and energy (or CPU cycles) would be expended to

analyze the virus. An additional feature, kill signal, would be used by a computer

to inform neighboring computers on the network that it was infected. The signal

would also convey to the recipient any signature or repair information that might

be of use in detecting and eradicating the virus. If the recipient found that it was

infected, it would send the signal to its neighbors, and so on. If the recipient is not

infected, it will not pass along the signal, but at least it will receive the database

updates; which effectively will immunize it against that virus. This approach

unified a wide variety of computer and data security problems of distinguishing

self from other.

Edge et al (2006) created an algorithm to be used for computer virus detection;

they had developed an Artificial Immune System Genetic Algorithm which is

called REtrovirus ALGOrithm (REALGO) based on the human immune system’s

use of reverse transcription Ribonucleic Acid (RNA). The REALGO algorithm

provided memory such that during a complex search the algorithm could revert

back to, and attempt to mutate in a different “direction”, in order to escape local

minima. In lieu of non-existing virus generic templates, validation was addressed

by using an appropriate variety of function optimizations with landscapes believed

to be similar to that of virus detection.

The results showed that the REALGO algorithm was superior for optimizing

complex functions but not necessarily for easier ones. This was due to the fact

that the REALGO algorithm added complexity to the search that was not needed

for simple searches. Once the complexity of the search landscape was greater

than that of the algorithm, the REALGO algorithm became superior. Preliminary

results had shown that the REALGO algorithm did indeed provide a superior

search for complex landscapes, due to its ability to revert back to a previous good

solution if the search stagnated. Rather than resetting to a new starting point, the

search was able to attempt a search in a new direction from this previous good

solution, without having to waste generations for the initial convergence.

www.manaraa.com

37

The next step was to integrate it into a complete virus detector [Edge, 2006].

Unterleitner proposed in his book (2008) a model of the computer immune system

(CIS), which was based on several mechanisms of the human immune system.

His system targeted the Internet worms, different kinds of viruses and shell codes

which were possibly polymorph. The implementation of his work was intended to

shield computers in a LAN from new network driven attack attempts. Each

network node was equipped with a sensor, which has been used to train an

individual set of detectors. That set evolved in response to the network traffic at

that node. Consequently, the set of detectors was different in each node, which

led to having the whole network system highly diverse.

According to Unterleitner, applying the CIS with multiple independent sensors

across a network ensured a distributed detection system which was not centrally

or hierarchically controlled. His implementation took advantage of the network

intrusion detection system called Snort, which provided the basis for processing

the network packets. His model proposed a hybrid detection system, which was

a combination between the Misuse detection and the Anomaly detection.

Two different methods were checked if they had been able to significantly

separate self elements from non-self elements. The first method was the widely

used Pearson correlation coefficient that was based on associations between

data sets and the algorithm. The second method included four algorithms:

Hamming Distance, Levenshtein or Edit Distance, R-Contiguous symbols and

Longest Common Subsequence.

The suggested Anomaly detection system was performing well, if three

requirements had been applied to the training of the detector set. The first

requirement was to have a stable definition for the Self set and it influenced the

training success. The next requirement was the number of detectors in the set,

which must be chosen properly. This requirement affected the detection rate, as

the detection capability of the system was influenced by the size of the detector

set. For example for the big Self set, a higher number of detectors had to be

selected. The last requirement was the right proportion of Self to Non-self in the

inspected data, which had an effect on the practical applicability of the detection

system.

www.manaraa.com

38

 The system detected attacks, if all three requirements were met. If the

implementation used a detector set that had been trained on some fields of the

Packet Header, then this the attacks would be detected.

Yu et al (2009) had presented a novel Windows PE virus detection approach that

drew inspiration from artificial immune system and the structure of the relocation

module of the virus. The structure of Windows PE virus was sufficiently analyzed.

The dynamic evolution of self and non-self, the presentation of the antigen, and

the generation of antibody were proposed. The experiment was conducted and

its results indicated that this approach did not only have relatively higher detection

rate of unknown Windows PE virus than the earlier known methods, but also had

better capability of self-adaptive and self-learning.

The experiment was conducted in the computer virus and anti-virus laboratory,

computer network and information security institute of Sichuan University. Since

there was no benchmark data set available for the detection of computer viruses,

unlike intrusion detection, the data sets including 100 viruses and 500 benign

executables were collected from the website VX Heavens, and from system32

folder in windows, respectively. The experimental results showed that the

proposed approach which was non-signature based not only had a higher

detection rate, low false-positive rate and low omitting rate, but also its efficiency

was better than the currently mature antivirus products.

www.manaraa.com

39

Chapter Three
 Methodology

This chapter represents the methodology of creating the proposed algorithm:

Virus Detection Clonal (VDC) algorithm, which is inspired from the Clonal

Selection Algorithm. This chapter includes three sections: data sets, research

tools and research stages which are emanated from the literature reviews and

related works.

3.1. Data sets

Since there is no benchmark data set available for the detection of computer

viruses, unlike Intrusion detection, the data sets including 100 viruses' signatures

have been collected from the website VX Heavens (2010). The 500 benign files

have been gathered from the windows XP files. The researcher has formatted a

PC then installed Windows XP, after that, she has chosen 500 files to guarantee

the disinfection. These signatures and files are used to fill the virus signatures'

pool and files' pool respectively.

3.2. Research tools

At first, the MATLAB (R2007a) version 6.5 has been used under Windows XP to

implement the algorithm. Then the MATLAB (R2009b) version 7.9 has been

employed to continue the rest of the implementation, because it has been found

that the MATLAB (R2009b) version 7.9 enhances the memory management. The

Clonal Selection Algorithm "CLONALG" which was created by Castro and Zuben

(2000a). At the stage of using GA, the Genetic Algorithm tool under MATLAB has

been used for the parameters tuning.

3.3. Research Stages

The research goes through five stages, where MATLAB is used. As illustrated in

Figure (16):

1. The Virus Detection Clonal (VDC) algorithm is designed and implemented,

where the Signature Scanner method with Clonal Selection algorithm

(CLONALG) is used.

www.manaraa.com

41

2. The VDC algorithm is tested.

3. The VDC algorithm is optimized by using the GA to tune the system

parameters.

4. The optimized VDC algorithm based on GA is tested.

5. The standard VDC algorithm is compared with the GA based algorithm.

This comparison depends on the accuracy criteria; the number of the

correct detections and false positives.

 The first four stages are described in the following sections, and the

comparison stage is described in chapter 5.

Figure 16: The Stages of research

3.3.1. The design and implementation of the VDC
algorithm

The CLONALG by Castro and Zuben, which is the algorithm that has been an

inspiration for the proposed algorithm (VDC),s is explained in the case of pattern

recognition, where a set of patterns to be recognized (P), and the basic steps of

the CLONALG are:

1. A population of individuals (M) is randomly initialized.

2. For each pattern of P a match with each element of the population M is

done to determine its affinity.

www.manaraa.com

41

3. A (n) of the best highest affinity elements of M is selected.

4. The cloning is applied for these n individuals by making copies of these

individuals proportional to their affinity; the higher the affinity the higher the

number of copies.

5. These copies are mutated with a rate proportional to their affinity, and then

stored in the temporary population (M').

6. The affinity is determined for the mutated clones.

7. The highest affinity one is reselected to be a candidate, then compared

with its respective element in M', if it is larger it is replaced.

8. The d lowest affinity individuals of M are replaced.

In this algorithm, it is assumed that the n highest affinity individuals are sorted in

ascending order after Step 3, so that the amount of clones generated for all these

n selected elements is given by the following equation:

n

i i

N
roundNc

1

)(

 ………………………………….………….. (3.1)

Where Nc is the total amount of clones generated for each of the patterns (P), β

is a multiplying factor, N is the total amount of elements (M), n is the number of

selected elements in M with the highest affinity, to apply the cloning on them, and

round is the operator that rounds its argument towards the closest integer. Each

term of this sum corresponds to the clone size of each selected element (M), e.g.,

for N = 100 and β = 1, the highest affinity element (i = 1) produces 100 clones,

while the second highest affinity element produces 50 clones, and so on [Castro,

2002b].

The VDC algorithm is inspired from the CLONALG described above, and the

differences are reviewed after explaining the VDC algorithm. Figure (17)

illustrates the flowchart of the VDC algorithm, which has the following main steps:

Cloning, Hypermutation and Reselection stochastically, these steps are detailed

at Figure (18).

www.manaraa.com

42

Figure 17: The VDC algorithm main steps flowchart

www.manaraa.com

43

Figure 18: Cloning, Hypermutation, and Reselection

The pseudo code of the VDC algorithm is illustrated at Figure (19); it represents

the steps that compose the VDC algorithm. These steps are described in details

after that.

www.manaraa.com

44

1

 Load files' pool (filename, file_content)

2

 Open signatures' pool (virus name, signature, initial fitness)

3 Loop condition

4 o Cloning:
5 Making (Fat * N) copies for each signature in T, and

their fitness in F, and the virus name in V

6 o Hypermutation:

7 M: creating random values(RN); 1 RN 0 and if
RN Pm then M=1 else M=0

8 D: creating random numbers (-1or 0 or 1)

9 Loop for each row in T

10 If M = 1 then

11 Mutation of one character by random
character in a random position

12 'mut_' is pre-appended to the virus name in
this row

13 D is added to the fitness in this row

14 o Re-selection:

15 Calculate Fitness:

16 For each file on the files' pool (not eliminated)

17 o The file content is matched with the
signatures in T; if they are matched then

18 is added to the fitness of the
matched signature

19 The matched file is eliminated from
the files' pool

20 The signatures are selected according to their
fitness stochastically

Figure 19: The VDC algorithm pseudo code

The full description of the pseudo code steps are:

www.manaraa.com

45

1. Load files' pool (filename, file_content):

The files' pool contains Windows files, and for each file the "file name" and

the "contents" are contained in the pool.

2. Open signatures' pool (virus name, signature, initial

fitness):

The virus signatures' pool contains the "virus name", the "virus signature", and

"initial fitness" for each signature. The initial fitness is a random number

between 4 and 210.

3. Loop condition:

This loop iterates until the IT reaches the Gen. Where IT is the iteration

number and Gen is the number of all generations, where Gen is a parameter,

defined in the algorithm. The steps from 4 to 20 are executed within this loop.

4. Cloning:

The signatures' pool is sorted in descending order according to their fitness,

before performing the cloning. The cloning process is applied on the half size

of the signatures' pool with the highest fitness, which is initially 100 signatures

(the half is 50 signatures with higher fitness). This size is increased from one

generation to another. The researcher chooses the half size only, based on

the experiments she applied, as by using all the signatures the size of the

signatures' pool becomes enlarged, which leads to slowing the algorithm.

Besides, the signatures with higher fitness are supposed to be widespread

and that's why they are chosen. Knowing that the half size of the signatures'

pool equation (half) is:

2

n
floorhalf ……………………………………………. (3.3)

Where n is the signatures' pool size.

www.manaraa.com

46

5. Making (Fat * N) copies for each signature in T, and their

fitness in F, and the virus name in V:

Where Fat is the multiplying factor; the probability of the number of the copies

in each clone, and N is the number of the signatures in the signatures' pool.

For example; if the Fat = 0.1 and N = 100, then the number of elements in

each clone is 10, and if the Fat = 0.05 and N = 100, then the number of

elements in each clone is 5. Knowing that, the copies of the same signature

form one clone.

Hence, in this step for each signature (Fat * N) of copies that is made; T has

the copies of the signature, F has copies of the fitness, and V has copies of

the virus name.

6. Hypermutation:

The Hypermutation is the mechanism of making random changes to the virus

signatures inside T, and occasionally one such change leads to an increase

in the fitness, because higher fitness variants are selected in later steps.

The steps from 6 to 13 clarify the Hypermutation step.

7. M: creating random values(RN); 1 RN 0 and if RN

Pm then M=1 else M=0

The Pm is the Hypermutation probability. M is a vector with the number of

rows that equals the number of rows in T, (1TrowcountM). The values in M are

0 or 1 according to the random number (RN) after comparing it with the Pm

value. If RN Pm then M=1 else M=0; Where 1 RN 0. For example, if

Pm=0.2, and if the random number is 0.08 then M=1, and if the random

number is 0.34 then M=0.

8. D: creating random numbers (-1or 0 or 1)

D is a vector with the number of rows that equals the number of rows in T, (

 1TrowcountD). The values inside D are -1 or 0 or 1, because these values are

added to the fitness of the mutated signatures in the following steps, where

www.manaraa.com

47

 the fitness of the mutated signature can be better, worse or the same as the

fitness of the signature before mutation, which reflects the randomness. So if

D=-1, this means the fitness is decreased by 1, and if D=0 the fitness remains

the same, and if D=1 the fitness increases by 1.

9. Loop for each row in T

The steps 10-13 are executed for each copy of the signatures in T.

10. If M = 1 then

If the value of M is 1 then the mutation steps are performed as represented in

steps from 11 to 13. Knowing that, if M=0 then the next row in T is executed

in step 9.

11. Mutate one character by a random character in a

random position

One character in the signature is replaced with a random character; the ASCII

code for this random character is between 48 and 122, where the characters

that are equivalent to these ASCII codes are the following: (1, 2, 3, 4, 5, 6, 7,

8, 9, :, <, =, >, ?, @, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,

U, V, W, X, Y, Z, [, \,], ^, _, `, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t,

u, v, w, x, y, z), and the replacement position is also chosen randomly. For

example, if the signature is '8e5ef1aec91259d70c5e62cdfe42c36e

ddc8cc9cbe45313d0' after mutation it can be

'8e5ef1aec91259d70c5e62kdfe42c36e ddc8cc9cbe45313d0'; the c is

replaced by k. or if the signature is '8e5ef1aec91259d70c5e62cdfe42c36e

ddc8cc9cbe45313d0' after mutation it can be

'8e5ef1aec91259d70c5e62cdfe42c36e ddc8ccdcbe45313d0'; the 9 is

replaced by d, and so on.

12. 'mut_' is pre-appended to the virus name in this

row

The virus name in V for the mutated signature in T is pre-appended with the

"mut_" to distinguish it from no mutated signatures. For example, if the virus

www.manaraa.com

48

 name is 'Virus.1C.Tanga.a', then it is changed to 'mut_Virus.1C.Tanga.a'.

13. D is added to the fitness in this row

The fitness in F for the mutated signature in T is changed by adding the D

value mentioned in step 8, hence the new fitness is either increased by 1 or

kept the same or decreased by 1.

14. Re-selection

This step is about choosing the next generation, whereas the signatures are

selected according to their fitness stochastically. The steps from 15 to 20

demonstrate this.

15. Calculate Fitness

The fitness function is a counter for the matches between the signatures in T

and the files inside the files' pool in addition to the initial fitness:

z

i

iyxionmatchfunctxfxf
1

0 ,)(………………………. (3.4)

Where xf0 : the initial fitness for signature x.

 iy : The ith file.

 : multiplying factor with a value of 10.

z : The number of all files in the files' pool.

The steps from 16 to 19 explain the calculation of fitness function.

16. For each file on the file's pool (not eliminated)

A loop is made for each file in the files' pool, and it is checked, if the file is not

eliminated then steps 17, 18, and 19 are done.

17. The file content is matched with the signatures in

T; if they are matched then

Each of the file content inside the files' pool is matched with all the signatures

in T. The match function is:

foundmatch

matchno
ionmatchfunct

;1

;0
 …………………………...….... (3.5)

www.manaraa.com

49

And if a match exists, then the steps 18 and 19 are executed.

18. is added to the fitness of the matched signature

The fitness value in F for this signature is changed by adding , where

equals 10 in this algorithm to give the detection process higher weight than

given to the mutation process (Mutation adds 1 to the fitness at most).

19. The matched file is eliminated from the files' pool

The matched file is eliminated from the files' pool since it is infected; to get rid

of the redundancy issue.

20. The signatures are selected according to the fitness

stochastically.

The stochastic selection process is:

1. A random number is created for each generation (iteration in Gen) R, which

is called the selection threshold, and its values are between 0.6 and 1; to

make sure that the Best fitness is selected.

2. Each fitness in the clone is divided by the maximum fitness of this clone.

3. If the value in step 2 R, and the signature does not exist in the original

signatures' pool (in step 2 initially) then the fitness of this signature is

appended to a temporary matrix.

4. The temporary matrix is sorted in descending order.

5. The best new 11 signatures are selected to be added to the original

signatures' pool. The appended new signatures are determined by 11 in

order to prevent the enlargement of the signatures' pool.

After that the execution continues back to step 3.

The fitness function for the whole algorithm is:

t

j

j

z

i

i Dyxionmatchfunctxfxf
11

0 ,)(…………...... (3.6)

Where: 0f x : the initial fitness for signature x

 yi: the ith file

www.manaraa.com

51

 : multiplying factor with a value of 10.

z: the number of all files in the files' pool.

foundmatch

matchno
ionmatchfunct

;1

;0
 …………………...…………… (3.7)

jD : if M = 1 then jD = (0 or 1 or -1) randomly

t: the no. of signatures in the original signatures' pool * the no. of signatures

in each clone.

After describing the CLONALG and the VDC algorithm, Table (1) demonstrates

the main differences between these two algorithms.

Table 1: The differences between CLONALG and VDC algorithm

Category CLONALG VDC algorithm

P Patterns to be recognized Files to be searched

M Randomly initialized Viruses' signatures as

described in section 3.1

Affinity The match between

elements in M and

patterns in P

Fitness function values in

equation 3.6

Number of

elements to be

cloned

n The half size of signatures'

pool

The number of

elements in each

clone

proportional to the

elements affinity in

equation 3.1

 Fixed and it is (Fat * N) for

each clone

Mutation Proportional to the

elements affinity

Not proportional

Lowest elements

in M

Replaced the lowest d Instead of replacement,

adding the best 11 elements¹

www.manaraa.com

51

¹ The replacement is not an option due to the sensitivity of the application, as

when dealing with viruses, even if the virus is not widespread, it is important

for the algorithm to be able to detect it.

This section has described the design and implementation of the VDC algorithm.

Yet, the next section includes the testing strategy for VDC algorithm.

3.3.2 The testing of the VDC algorithm
The strategy of testing is demonstrated in this section, and the results are figured

in chapter four. There are two phases: training and matching.

The training phase takes in consideration the filling of the signatures' pools with

the new signatures after applying the VDC algorithm in addition to the already

known signatures (original signatures that was gathered from VX Heaven website

before mutation).

To apply the VDC algorithm the files' pools are needed to complete the matching

process between files and signatures.

At the beginning, all files contained in the files' pool are benign to test the virus

detection, and then 5% of the files are infected, after that 25%, 50%, 75%, 100%

of the files are infected, as figured in Table (2). For the training process the files'

pool with 5%, 25% and 75% infected files are used (to leave the other three files'

pools for the matching phase without being used in the training phase), then all

the six files' pools are employed at the matching process.

Table 2: Files' pool contents

No. of all
files

No. Of
benign files

No. of
infected files

Infection
Rate

500 500 0 0%

500 475 25 5%

500 375 125 25%

500 250 250 50%

500 125 375 75%

500 0 500 100%

A set of infected files is prepared by infecting them with viruses from the dataset

mentioned in section 3.1. In the 5% files' pool, the 25 files are selected randomly

www.manaraa.com

52

from the set of prepared infected files. Then for the 25% files pool, the 125 files

are selected from the rest of the set (with out retaining the 25 files back). After

that, for the 50% files' pool the 375 are selected from the rest, and so on.

Several parameters in the VDC algorithm are changed to search for better

performance, with different values for each parameter: Learning Gen, Pm and

Fat. The learning Gen values are 100, 150 or 300, the Pm values are 0.05, 0.1

or 0.2, and the Fat values are either 0.05 or 0.1. These parameters are chosen

as examples but not exclusive, because the probabilities of the parameters

values are infinite, and according to the researcher diligence. The parameters

values are described at Table (3). The resulting signatures' pools are: Sig1, Sig2,

Sig3, Sig4, Sig5, Sig6, Sig7, Sig8, Sig9, Sig10, Sig11 and Sig12, which are used

in the matching phase.

Table 3: The parameters values of the training phase

Parameters
Signatures' pools Learning Gen Pm Fat

5% infected files

100 0.05 0.05 Sig1

100 0.1 0.05 Sig2

300 0.05 0.1 Sig3

100 0.05 0.1 Sig12

25% infected files

100 0.05 0.05 Sig4

300 0.1 0.1 Sig5

150 0.2 0.05 Sig6

100 0.2 0.05 Sig10

75% infected files

100 0.2 0.05 Sig7

150 0.1 0.1 Sig8

300 0.05 0.1 Sig9

100 0.2 0.1 Sig11

After finishing the training phase, the matching phase starts. The matching is

concerned with the calculation of fitness function, which means searching for

matches between the files' pool and the virus signatures' pool. Therefore, the

matching algorithm does not contain the Hypermutation, Cloning nor reselection

steps. As illustrated in the matching flow chart in Figure (20).

www.manaraa.com

53

Figure 20: Matching the VDC algorithm flowchart

Figure (21) illustrates the pseudo code of the matching phase. The below steps

are explained previously in section 3.3.1. except in step 7 where the increase

value on the fitness is 1 (not 10).

www.manaraa.com

54

1

 Load files' pool (filename, file_content)

2

 Open signatures' pool (virus name, signature, fitness)

3 Loop condition

4 Calculate Fitness:

5 For each file on the files' pool (not eliminated)

6 o The file content is matched with the signatures
in the signatures' pool; if they are matched
then

7 1 is added to the fitness of the
matched signature

8 The matched file is eliminated from
the files' pool

Figure 21: The pseudo code of the matching of the VDC algorithm

The fitness function is a counter for the matches between the virus signatures

and the files:

z

i

iyxionmatchfunctxfxf
1

0 ,)(………………………………. (3.8)

Where: xf0 : the initial fitness for signature x

 iy : The ith file

z : The number of all files in the files' pool

 The match function is shown in equation 3.7.

The signatures' pools that are obtained in Table (3) are employed with the files'

pools (0%, 5%, 25%, 50%, 75%, and 100%) in the matching process as illustrated

in Table (4). Knowing that, matching Gen=100 for all of them.

www.manaraa.com

55

Table 4: The Parameters values of the matching phase

Files' pools Signatures' pools

0% Sig1

0% Sig5

0% Sig8

5% Sig6

5% Sig7

5% Sig10

5% Sig11

25% Sig1

25% Sig2

25% Sig12

50% Sig4

50% Sig5

50% Sig8

75% Sig1

75% Sig3

75% Sig6

75% Sig9

75% Sig12

100% Sig2

100% Sig4

100% Sig7

100% Sig10

100% Sig11

100% Sig12

The matching starts on the files' pool 0%, which contains 500 benign files, and

the signatures' pools Sig1, Sig5 and Sig8 as illustrated in Table (4), to examine

the concept of the false positive (when detecting benign files as infected files).

For the five files' pools that are left, the matching is performed by running each

file's pool with the corresponding signatures' pools in Table (4), then:

- When matching files' pools with 5% and 75% of infected files, new 100 files

are added to the files' pool at the matching iteration (matching Gen) of 5.

- When matching files' pools with 25%, 50% and 100% of infected files, new

100 files are added to the files' pool at the matching iteration (matching Gen)

of 50. Regardless of the time when the new 100 files are added to the files'

pool, the algorithm must be able to detect the infected files.

www.manaraa.com

56

The 100 files include benign files and infected files. The infected files are

categorized into three:

1. Files with signatures that already exist in the original files pool. The

signatures are used at the training phase.

2. Files with signatures that do not exist in the original files pool. The

signatures are not used at the training phase.

3. Files that have signatures with mutations. These mutated signatures are

obtained from the signatures' pools that are produced in the training

phase.

This section has described the testing strategy of the VDC algorithm. Yet, the

next section includes the optimization of the VDC algorithm by using the GA.

3.3.3 The optimization of the VDC algorithm by using
the GA

The Genetic Algorithm Toolbox in the MATLAB is employed to tune the

parameters of the VDC algorithm. These parameters are: the multiplying factor

which determines the number of elements in each clone (Fat), and the

Hypermutation factor (Pm). These two parameters construct the input string. The

output string is the Mean fitness which is a real number that represents the Mean

fitness while executing the VDC algorithm. The fitness function of the genetic

algorithm is a file called "myfun" which contains the call for the VDC algorithm (.m

file) pre-appended by the minus sign (-) to maximize the searching by the GA,

because GA by default minimizes the searching and by adding the minus(-), it

searches for the maximum.

Figure (22) illustrates how the GA treats the VDC algorithm from the previous

section as a black box.

www.manaraa.com

57

Figure 22: The GA as Parameters Optimizer

The VDC algorithm (.m file) function prototype is:

Function [meanfx] = VDC_algorithm(param)

The param contains the two parameters; Pm = param(1) and Fat = param(2). The

lower bound of these parameters = [0.01; 0.02] and the upper bound = [1; 1],

where the first entry is for the first parameter and the second entry is for the

second parameter.

The lower bound for the Fat has been chosen with the value of 0.02, as the

number of elements in each clone = Fat * N and N =100, which represents the

initial population that has been collected from the VXHeaven website, so when

Fat= 0.02, this means that there is at least 2 elements in the clone.

Regarding the Pm, the value of 0.01 is chosen as a lower bound, because if it

has been less than this value, the Pm is closer to zero, so the effect of

Hypermutation does not appear. So if the value of Pm = 0.01, this means that

from each 100 copies of signatures, Hypermutation is executed at one copy at

least.

The upper bound represents the maximum value of the parameters Fat and Pm

which is equals 1.

Figure (23) illustrates the flow chart that represents the process of optimizing the

VDC algorithm using the GA.

The GA is supposed to find the best parameters' values for the VDC algorithm

(Pm and Fat), and these values are used to run the VDC algorithm (when using

the parameters' values that are resulted from using the GA as an optimizer in the

www.manaraa.com

58

VDC algorithm. This algorithm is called the optimized VDC algorithm based on

GA). The results of the optimized VDC algorithm based on GA and the

comparison between the VDC algorithm and this algorithm are included in

chapter five.

Figure 23: The flowchart of optimizing the VDC algorithm by the GA

3.3.4 The testing of the optimized VDC algorithm
based on GA

The testing strategy of the optimized VDC algorithm based on GA has two

phases: training and matching.

The training phase takes in consideration filling signatures' pools, using the

parameters from the previous section - after applying the GA based algorithm.

Then the matching phase tests these signatures' pools with the files' pools

mentioned in Table (1). The matching flow chart is illustrated in Figure (20).

This chapter has shown the strategy of the research. The results are explained

in chapter four and five, whereas chapter six demonstrates the conclusion and

recommendations for future researches.

www.manaraa.com

59

Chapter Four
 The VDC algorithm Results and Analysis

The proposed algorithm is the CLONALG algorithm after updating it to detect

viruses as a signature scanner. This algorithm is created as mentioned in chapter

three to produce the Virus Detection Clonal (VDC) Algorithm. This chapter

answers the first question of the research questions in section 2.1, which is "will

the proposed AIS algorithm – The Virus Detection Clonal (VDC) Algorithm -

be good in detecting computer viruses?" by demonstrating the results. These

results are divided into two categories: the training phase and the matching

phase.

4.1 Training of the VDC algorithm
The training phase applies the VDC algorithm on different files' pools (5%, 25%

and 75% of infected files – to leave the other three files' pools for the matching

phase without being used in the training phase) with different values of

parameters; these values have been chosen according to the experience of the

researcher from the experiments on the VDC algorithm. The parameters are

Learning Gen, Pm and Fat. The Learning Gen (number of generations) has the

values: 100, 150 or 500, the Pm (Hypermutation probability) has the values: 0.05,

0.1 or 0.2, and the number of elements per clone is Fat * N; where N =100 for all

runs, and Fat has the values: 0.05 or 0.1. Whilst, when Fat=0.05 the number of

elements per clone=5, and when Fat=0.1 the number of elements per clone=10.

The produced signatures' pools are: Sig1, Sig2, Sig3, Sig4, Sig5, Sig6, Sig7,

Sig8, Sig9, Sig10, Sig11 and Sig12 as represented in Table (3), and these

signatures' pools are used in the matching phase next section. Knowing that, the

fitness is calculated based on equation 3.6.

Figure (24) illustrates the initial population of the signatures' pools for all of the

twelve runs; because all runs read the same 100 signatures -that have been

gathered from the VX Heaven website- as initial population, so the population

size is 100 for all of them. This figure is used later on to compare the initial

population of the signatures' pools with the final population after applying the

training runs.

www.manaraa.com

61

Figure 24: The Initial Population

The first run parameters are: Learning Gen=100, Pm=0.05 and Fat = 0.05, and

the files' pool with 5% of infected files, and the produced signatures' pool is saved

as Sig1.

Table (5) shows the results of the first run, where each of the iterations display

the number of signatures in the signatures' pool. The number of signatures value

is 100 on the first iteration and it is increased by 11 signatures or less in each

iteration. The reason that the number of signatures that are added is less than

eleven is in some iterations, the best mutated signatures that corresponds with

the selection threshold may be less than 11. As shown in Table (5), the number

of signatures in iteration 101 is 1198, but if 11 signatures are added in each of

the iterations, then the number of signatures is supposed to be 1200.

The selection threshold ranges between 0.6 and 1.0; this threshold determines

the selection process stochastically, as described in step 20 in the VDC algorithm

in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 9.97, then the rate decreases to reach 6.28 in the second iteration, to

become 5.25 in the third iteration and so on, till it reaches around 0.11 in the last

five iterations, as shown in Table (5). (The whole table is viewed in Appendix A).

Whereas the Best fitness increases quickly in the first iteration only and later on

www.manaraa.com

61

the increase becomes slower; in the first iteration the changing rate is 25 for the

Best fitness, after that it increases by 1 with several iterations. Figure (25)

represents the Mean fitness and the Best fitness.

Table 5: The first Training run results

Iteration
number

No of
signatures

Selection
threshold Mean fitness

Best
fitness

1 100 0.90 160.14 210.00

2 111 0.90 170.11 235.00

3 122 1.00 176.39 236.00

4 131 0.60 181.64 236.00

5 142 0.70 186.43 236.00

… … … … …

96 1143 0.90 246.61 253.00

97 1154 1.00 246.72 253.00

98 1165 0.70 246.82 253.00

99 1176 0.90 246.92 253.00

100 1187 0.70 247.03 253.00

101 1198 1.00 247.15 253.00

As a result the number of detected infected files is 17 out of 25, (as it is the

training phase, the researcher decides to take half the size of the signatures'

pool as mentioned in section 3.1), and the Mean fitness = 247.1486.

Figure 25: The first run Mean fitness & Best fitness

Figure (26) demonstrates the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

62

Figure 26: The first run final population

The second run parameters are: Learning Gen=100, Pm=0.1 and Fat = 0.05,

and the files' pool with 5% of infected files, and the produced signatures' pool is

saved as Sig2.

Table (6) shows the results of the second run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (6), the number of signatures in the last iteration is

1200.

The selection threshold ranges between 0.6 and 1.0; this threshold determines

the selection process stochastically, as described in step 20 in the VDC algorithm

in section 3.1.

Table 6: The second Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.70 160.12 210.00

2 111 0.70 173.85 224.00

3 122 1.00 185.36 224.00

4 133 1.00 191.65 225.00

5 144 0.60 196.44 225.00

… … … … …

96 1145 0.80 241.28 250.00

97 1156 1.00 241.47 250.00

98 1167 0.80 241.68 251.00

99 1178 0.60 241.87 251.00

100 1189 0.90 242.08 251.00

101 1200 0.70 242.29 251.00

www.manaraa.com

63

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 13.73, then the rate decreases to reach 11.51 in the second iteration, to

become 6.29 in the third iteration and so on, till it reaches around 0.20 in the last

five iterations, as shown in Table (6).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate is 14 for the

Best fitness, after that it increases by 1 with several iterations. Figure (27)

represents the Mean fitness and the Best fitness.

As a result the number of detected infected files is 17 out of 25, and the Mean

fitness = 242.2893.

Figure 27: The second run Mean fitness & Best fitness

The initial population is demonstrated in solid line at Figure (28), which is the

same in Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

64

Figure 28: The second run final population

The third run parameters are: Learning Gen=300, Pm=0.05 and Fat = 0.1, and

the files' pool with 5% of infected files, and the produced signatures' pool is saved

as Sig3.

Table (7) shows the results of the third run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (7), the number of signatures in the last iteration is

3400. The selection threshold ranges between 0.6 and 1.0; this threshold

determines the selection process stochastically, as described in step 20 in the

VDC algorithm in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 8.85, then the rate increase to reach 10.59 in the second iteration, to

become 8.68 in the third iteration, till it reaches around 0.16 in the last five

iterations, as shown in Table (7).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate for the Best

fitness is 15, after that it increases by 1 with several iterations. Figure (29)

represents the Mean fitness and the Best fitness.

www.manaraa.com

65

Table 7: The third Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 1.00 160.10 210.00

2 111 0.80 168.95 225.00

3 122 0.60 179.54 225.00

4 133 0.80 188.22 225.00

5 144 0.70 194.48 226.00

… … … … …

296 3345 0.70 274.47 292.00

297 3356 0.60 274.63 293.00

298 3367 0.80 274.79 293.00

299 3378 0.80 274.95 293.00

300 3389 1.00 275.11 293.00

301 3400 1.00 275.27 293.00

As a result the number of detected infected files is 17 out of 25, and the Mean

fitness = 275.2660.

Figure 29: The third run Mean fitness & Best fitness

Figure (30) represents the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

66

Figure 30: The third run final population

The Forth run parameters are: Learning Gen=100, Pm=0.05 and Fat = 0.05 and

the files' pool with 25% of infected files, and the produced signatures' pool is

saved as Sig4.

Table (8) shows the results of the forth run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (8), the number of signatures in the last iteration is

1200. The selection threshold ranges between 0.6 and 1.0; this threshold

determines the selection process stochastically, as described in step 20 in the

VDC algorithm in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 10.2, then the rate increases to reach 18.36 in the second iteration, to

become 7.52 in the third iteration, till it reaches around 0.14 in the last five

iterations, as shown in Table (8).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate is 30 for the

Best fitness, after that it increases by 1 with several iterations. Figure (31)

represents the Mean fitness and the Best fitness.

www.manaraa.com

67

Table 8: The forth Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.60 160.12 210.00

2 111 0.60 170.32 440.00

3 122 0.70 188.68 440.00

4 133 0.80 196.20 440.00

5 144 0.70 205.57 440.00

… … … … …

96 1145 1.00 448.94 455.00

97 1156 0.70 449.07 455.00

98 1167 0.60 449.20 456.00

99 1178 0.90 449.33 456.00

100 1189 0.80 449.48 456.00

101 1200 0.80 449.61 456.00

As a result the number of detected infected files is 103 out of 125, and the

Mean fitness = 449.6050.

Figure 31: The forth run Mean fitness & Best fitness

Figure (32) exhibits the initial population in solid line, which is the same in Figure

(24), and the final population including the new signatures after Hypermutation is

in dotted line. As shown the fitness of the new signatures after Hypermutation is

higher.

www.manaraa.com

68

Figure 32: The forth run final population

The fifth run parameters are: Learning Gen=300, Pm=0.1 and Fat = 0.1, and the

files' pool with 25% of infected files, and the produced signatures' pool is saved

as Sig5.

Table (9) shows the results of the fifth run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (9), the number of signatures in the last iteration is

3400. The selection threshold ranges between 0.6 and 1.0; this threshold

determines the selection process stochastically, as described in step 20 in the

VDC algorithm in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 17.17, then the rate increases to reach 23.61 in the second iteration, to

become 24.60 in the third iteration, till it reaches around 0.25 in the last five

iterations, as shown in Table (9).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate for the Best

fitness is 30, after that it increases by 1 with several iterations. Figure (33)

represents the Mean fitness and the Best fitness.

www.manaraa.com

69

Table 9: The fifth Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.80 160.11 210.00

2 111 0.90 177.28 440.00

3 122 0.80 200.89 440.00

4 133 0.90 225.49 441.00

5 144 0.60 252.07 441.00

… … … … …

296 3345 1.00 523.94 550.00

297 3356 1.00 524.18 551.00

298 3367 1.00 524.44 551.00

299 3378 1.00 524.68 551.00

300 3389 0.80 524.94 552.00

301 3400 0.80 525.19 552.00

As a result the number of detected infected files is 103 out of 125, and the

Mean fitness = 525.1859.

Figure 33: The fifth run Mean fitness & Best fitness

Figure (34) demonstrates the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

71

Figure 34: The fifth run final population

The sixth run parameters are: Learning Gen=150, Pm=0.2 and Fat = 0.05, and

the files' pool with 25% of infected, files and the produced signatures' pool is

saved as Sig6.

Table (10) shows the results of the sixth run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (10), the number of signatures in the last iteration is

1750.

The selection threshold ranges between 0.6 and 1.0; this threshold determines

the selection process stochastically, as described in step 20 in the VDC algorithm

in section 3.1.

Table 10: The sixth Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.70 160.11 210.00

2 111 0.70 179.63 598.00

3 122 0.70 200.41 598.00

4 133 0.60 213.71 598.00

5 144 1.00 222.95 599.00

… … … … …

146 1695 1.00 641.52 655.00

147 1706 0.70 641.76 656.00

148 1717 0.90 642.03 656.00

149 1728 0.70 642.28 656.00

150 1739 0.70 642.54 656.00

151 1750 1.00 642.79 657.00

www.manaraa.com

71

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 19.52, then the rate increases to reach 20.78 in the second iteration, to

become 13.3 in the third iteration, till it reaches around 0.25 in the last five

iterations, as shown in Table (10).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate for the Best

fitness is 388, after that it increases by 1 with several iterations. Figure (35)

represents the Mean fitness and the Best fitness.

As a result the number of detected infected files is 103 out of 125, and the

Mean fitness = 642.7941.

Figure 35: The sixth run Mean fitness & Best fitness

Figure (36) demonstrates the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

72

Figure 36: The sixth run final population

The seventh run parameters are: Learning Gen=100, Pm=0.2 and Fat = 0.05,

and the files' pool with 75% of infected files, and the produced signatures' pool is

saved as Sig7.

Table (11) shows the results of the seventh run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (11), the number of signatures in the last iteration is

1200. The selection threshold ranges between 0.6 and 1.0; this threshold

determines the selection process stochastically, as described in step 20 in the

VDC algorithm in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 28.17, then the rate increases to reach 47.82 in the second iteration, to

become 31.18 in the third iteration, till it reaches around 0.29 in the last five

iterations, as shown in Table (11).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate is 598 for the

Best fitness, after that it increases by 1 with several iterations. Figure (37)

represents the Mean fitness and the Best fitness.

www.manaraa.com

73

Table 11: The seventh Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.70 160.11 210.00

2 111 0.70 188.28 808.00

3 122 0.70 236.10 808.00

4 133 0.60 267.28 808.00

5 144 1.00 300.86 809.00

… … … … …

96 1145 0.80 837.22 849.00

97 1156 0.70 837.53 850.00

98 1167 0.80 837.84 850.00

99 1178 0.60 838.12 850.00

100 1189 0.60 838.43 850.00

101 1200 0.70 838.74 851.00

As a result the number of detected infected files is 357 out of 375, and the

Mean fitness = 838.7423.

Figure 37: The seventh run Mean fitness & Best fitness

Figure (38) demonstrates the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

74

Figure 38: The seventh run final population

The eighth run parameters are: Learning Gen=150, Pm=0.1 and Fat = 0.1, and

the files' pool with 75% of infected files, and the produced signatures' pool is

saved as Sig8.

Table (12) shows the results of the eighth run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (12), the number of signatures in the last iteration is

1750. The selection threshold ranges between 0.6 and 1.0; this threshold

determines the selection process stochastically, as described in step 20 in the

VDC algorithm in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 46.42, then the rate increases to reach 63.06 in the second iteration, to

become 6.29 in the third iteration, till it reaches around 0.29 in the last five

iterations, as shown in Table (12).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate for the Best

fitness is 1010, after that it increases by 1 with several iterations. Figure (39)

represents the Mean fitness and the Best fitness.

www.manaraa.com

75

Table 12: The eightth Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.80 160.11 210.00

2 111 0.90 179.99 1220.00

3 122 0.80 226.41 1220.00

4 133 0.90 289.47 1221.00

5 144 0.60 372.35 1221.00

… … … … …

146 1695 0.60 1264.41 1281.00

147 1706 1.00 1264.70 1281.00

148 1717 0.90 1265.01 1281.00

149 1728 0.60 1265.28 1282.00

150 1739 0.80 1265.58 1282.00

151 1750 0.90 1265.86 1282.00

As a result the number of detected infected files is 252 out of 375, and the

Mean fitness = 1265.9000.

Figure 39: The eighth run Mean fitness & Best fitness

Figure (40) demonstrates the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

76

Figure 40: The eighth run final population

The ninth run parameters are: Learning Gen=300, Pm=0.05 and Fat = 0.1, and

the files' pool with 75% of infected files, and the produced signatures' pool is

saved as Sig9.

Table (13) shows the results of the ninth run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (13), the number of signatures in the last iteration is

3400. The selection threshold ranges between 0.6 and 1.0; this threshold

determines the selection process stochastically, as described in step 20 in the

VDC algorithm in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 17.81, then the rate increases to reach 43.02 in the second iteration, to

become 10.21 in the third iteration, till it reaches around 0.15 in the last five

iterations, as shown in Table (13). Whereas the Best fitness increases quickly in

the first iteration only and later on the increase becomes slower; in the first

iteration the changing rate is 981 for the Best fitness, after that it increases by 1

with several iterations. Figure (41) represents the Mean fitness and the Best

fitness.

www.manaraa.com

77

Table 13: The ninth Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.80 160.11 210.00

2 111 0.90 177.92 1191.00

3 122 0.90 220.94 1191.00

4 133 0.90 231.15 1191.00

5 144 0.90 241.01 1191.00

… … … … …

296 3345 0.60 1242.22 1259.00

297 3356 0.90 1242.36 1259.00

298 3367 0.70 1242.52 1260.00

299 3378 1.00 1242.68 1260.00

300 3389 0.60 1242.83 1260.00

301 3400 0.60 1242.97 1261.00

As a result the number of detected infected files is 267 out of 375, and the

Mean fitness = 1243.0000.

Figure 41: The ninth run Mean fitness & Best fitness

Figure (42) demonstrates the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

78

Figure 42: The ninth run final population

The tenth run parameters are: Learning Gen=100, Pm=0.2 and Fat = 0.05 and

the files' pool with 25% of infected files, and the produced signatures' pool is

saved as Sig10.

Table (14) shows the results of the tenth run, where each iteration displays the

number of signatures in the signatures' pool. The number of signatures value is

100 on the first iteration and it is increased by 11 signatures or less in each

iteration. As shown in Table (14), the number of signatures in the last iteration is

1200. The selection threshold ranges between 0.6 and 1.0; this threshold

determines the selection process stochastically, as described in step 20 in the

VDC algorithm in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 19.52, then the rate increases to reach 20.78 in the second iteration, to

become 13.3 in the third iteration, till it reaches around 0.30 in the last five

iterations, as shown in Table (14).

Whereas the Best fitness increases quickly in the first iteration only and later on

the increase becomes slower; in the first iteration the changing rate is 388 for the

Best fitness, after that it increases by 1 with several iterations. Figure (43)

represents the Mean fitness and the Best fitness.

www.manaraa.com

79

Table 14: The tenth Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.70 160.11 210.00

2 111 0.70 179.63 598.00

3 122 0.70 200.41 598.00

4 133 0.60 213.71 598.00

5 144 1.00 222.95 599.00

… … … … …

96 1145 0.80 627.22 639.00

97 1156 0.70 627.53 640.00

98 1167 0.80 627.84 640.00

99 1178 0.60 628.12 640.00

100 1189 0.60 628.43 640.00

101 1200 0.70 628.74 641.00

As a result the number of detected infected files is 103 out of 125, and the

Mean fitness = 628.7423.

Figure 43: The tenth run Mean fitness & Best fitness

The initial population is demonstrated in solid line at Figure (44), which is the

same in Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

81

Figure 44: The tenth run final population

The eleventh run parameters are: Learning Gen=100, Pm=0.2 and Fat = 0.1,

and the files' pool with 75% of infected files, and the produced signatures' pool is

saved as Sig11. Table (15) shows the results of the eleventh run, where each

iteration displays the number of signatures in the signatures' pool. The number

of signatures value is 100 on the first iteration and it is increased by 11 signatures

or less in each iteration. As shown in Table (15), the number of signatures in the

last iteration is 1200.

The selection threshold ranges between 0.6 and 1.0; this threshold determines

the selection process stochastically, as described in step 20 in the VDC algorithm

in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 22.52, then the rate increases to reach 56.90 in the second iteration, to

become 85.06 in the third iteration, till it reaches around 0.42 in the last five

iterations, as shown in Table (15). Whereas the Best fitness increases quickly in

the first iteration only and later on the increase becomes slower; in the first

iteration the changing rate is 617 for the Best fitness, after that it increases by 1

with several iterations. Figure (45) represents the Mean fitness and the Best

fitness.

www.manaraa.com

81

Table 15: The eleventh Training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.80 160.11 211.00

2 111 0.90 182.63 828.00

3 122 0.80 239.53 829.00

4 133 0.90 324.59 829.00

5 144 0.60 411.88 830.00

… … … … …

96 1145 1.00 869.65 886.00

97 1156 0.90 870.05 886.00

98 1167 0.70 870.50 887.00

99 1178 1.00 870.90 887.00

100 1189 0.80 871.34 888.00

101 1200 0.90 871.76 889.00

As a result the number of detected infected files is 341 out of 375, and the Mean

fitness = 871.7612.

Figure 45: The eleventh run Mean fitness & Best fitness

Figure (46) demonstrates the initial population in solid line, which is the same in

Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

82

Figure 46: The eleventh run final population

The twelfth run parameters are: Learning Gen=100, Pm=0.05 and Fat = 0.1, and

the files' pool with 5% of infected files, and the produced signatures' pool is saved

as Sig12. Table (16) shows the results of the twelfth run, where each iteration

displays the number of signatures in the signatures' pool. The number of

signatures value is 100 on the first iteration and it is increased by 11 signatures

or less in each iteration. As shown in Table (16), the number of signatures in the

last iteration is 1200.

The selection threshold ranges between 0.6 and 1.0; this threshold determines

the selection process stochastically, as described in step 20 in the VDC algorithm

in section 3.1.

The Mean fitness, first increases at a rapid rate, then the increase continues at a

slower rate; the Mean fitness in the beginning increases at a higher changing rate

reaching 13.54, then the rate decreases to reach 9.47 in the second iteration, to

become 8.42 in the third iteration, till it reaches around 0.19 in the last five

iterations, as shown in Table (16). Whereas the Best fitness increases quickly in

the first iteration only and later on the increase becomes slower; in the first

iteration the changing rate is 15 for the Best fitness, after that it increases by 1

with several iterations. Figure (47) represents the Mean fitness and the Best

fitness.

www.manaraa.com

83

Table 16: The twelfth Training run results

Iteration
number

No. of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.80 160.11 210.00

2 111 0.90 173.65 225.00

3 122 0.90 183.12 225.00

4 133 0.90 191.54 225.00

5 144 0.90 196.75 225.00

… … … … …

96 1145 0.60 242.62 251.00

97 1156 0.80 242.81 251.00

98 1167 0.80 243.02 251.00

99 1178 0.80 243.20 252.00

100 1189 0.90 243.40 252.00

101 1200 0.60 243.59 252.00

As a result the number of detected infected files is 17 out of 25, and the Mean

fitness =243.5857.

Figure 47: The twelfth run Mean fitness & Best fitness

The initial population is demonstrates in solid line at Figure (48), which is the

same in Figure (24), and the final population including the new signatures after

Hypermutation is in dotted line. As shown the fitness of the new signatures after

Hypermutation is higher.

www.manaraa.com

84

Figure 48: The twelfth run final population

4.1.1 The Training Phase Analysis

At the end of the Training phase, which includes 12 runs, the results of these runs

are summarized in Table (17). This table shows the Mean fitness and the number

of signatures for all runs that are already conducted. As noticed in this Table,

there are changes in the Mean fitness and the number of signatures, and that's

due to the changes in the variables values (Learning Gen, Pm, Fat and Training

pool). As for the variable Pm, it has the values 0.05, 0.1 or 0.2 and this change

affects the Hypermutation probability that changes signatures, to produce new

mutations, in the attempt to develop new signatures.

While for the variable Fat, with its values of 0.05 or 0.1, when Fat =0.05 the

number of elements per clone is 5, and when Fat=0.1 the number of elements

per clone is 10, so when the number of elements increases at the clone, it affects

the number of signatures copies that enters the Hypermutation process, by

increasing them. This means that the effect of Hypermutation is controlled by

these two parameters together (Pm and Fat), and each Hypermutation affects the

fitness by adding 1 at most.

For the learning Gen variable, it represents the number of generations which is

processed by the algorithm. When the number of generations increase, the

percentage of the new signatures that are added to the signatures' pool

www.manaraa.com

85

increases, and that's because in each iteration the highest fitness of 11 new

signatures (hypermutated) are selected stochastically. Knowing that the number

of new signatures can be less than 11 in one generation, when the number of all

new signatures that corresponds with the value of the selection threshold

between 0.6 and 1.0 are less than 11 in that generation. For example, the case

with Sig1, where the number of signatures is 1198, while it must be 1200; if 11

signatures are added in each generation, (11 Signatures * 100 generations + the

100 signatures in the initial population). Typically, if the learning Gen=100, the

number of signatures is 1200, and when the learning Gen = 150, the number of

signatures is 1750, and finally when the learning Gen = 300, the number of

signatures is 3400. The Leaning Gen affects the Mean fitness.

Whereas for the Training pool variable, which has the values of 5%, 25% or 75%

of infected files, it affects the Mean fitness, whenever the infected files are

increased, the added value on the fitness increases due to the effect of the

detection; as each detection adds (=10) on the fitness. Knowing that, the effect

of the Hypermutation on the fitness is by adding 1 at most in each Hypermutation.

So in the Training pool whenever the number of infected files increases, the Mean

fitness increases, and this variable has the higher effect on the Mean fitness as

shown in Table (17).

Table 17: The Summary of the training results

Parameters Signatures'
pool

Mean
fitness

No. of
signatures Learning Gen Pm Fat

5% infected files

100 0.05 0.05 Sig1 247.1486 1198

100 0.1 0.05 Sig2 242.2893 1200

300 0.05 0.1 Sig3 275.2660 3400

100 0.05 0.1 Sig12 243.5857 1200

25% infected files

100 0.05 0.05 Sig4 449.6050 1200

300 0.1 0.1 Sig5 525.1859 3400

150 0.2 0.05 Sig6 642.7941 1750

100 0.2 0.05 Sig10 628.7423 1200

75% infected files

100 0.2 0.05 Sig7 838.7423 1200

150 0.1 0.1 Sig8 1265.9 1750

www.manaraa.com

86

300 0.05 0.1 Sig9 1243.0000 3400

100 0.2 0.1 Sig11 871.7612 1200

The fitness increases by either the detection (each detection adds), or by the

Hypermutation (each Hypermutation increases 1 at most). The detection

depends on the Training pool (number of infected files). The Hypermutation is

controlled by the Pm and Fat, and when the Learning Gen increases, the times

of Hypermutation increase, hence the fitness increase.

The training phase is only done to produce the signatures' pools (Sig1… Sig12)

for the matching phase, hence the space is lacking the opportunity for future

conclusions, because the Cloning, Hypermutation and Detection are just carried

on the half size of the signatures' pool.

4.2 Matching the VDC algorithm

The matching phase runs all the six files' pools mentioned in section 3.3.2, to test

the signatures' pools which are filled in the training phase previously, and they

are: Sig1, Sig2, Sig3, Sig4, Sig5, Sig6, Sig7, Sig8, Sig9, Sig10, Sig11 and Sig12.

The description of these pools is represented at Table (2).

To test the concept of the false positive in the beginning, Sig1, Sig5 and Sig8 are

run on the files' pool with 0% of infected files, then matching each of Sig6, Sig7,

Sig10 and Sig11 on the files' pool with 5% of infected files follows, with the

addition of 100 files when the matching Gen = 5. Followed by matching each of

Sig1, Sig2 and Sig12 on the files' pool with 25% of infected files follows, with the

addition of 100 files when the matching Gen = 50. After that, matching each of

Sig4, Sig5 and Sig8 on the files' pool with 50% of infected files commences, with

the addition of 100 files when the matching Gen = 50. Next, matching each of

Sig1, Sig3, Sig6, Sig9 and Sig12 on the files' pool with 75% of infected files

begins, with the addition of 100 files when the matching Gen = 5. After ward,

matching each of Sig2, Sig4, Sig7, Sig10, Sig11 and Sig12 on the files' pool with

100% of infected files commences, with the addition of 100 files when the

matching Gen = 50.

www.manaraa.com

87

It must be noted that the 100 files that are added after the first iteration contain

benign and infected files.

The infected files are come from three sources: the first source is files with

signatures used at the training phase that already exist in the original files' pool.

The second source is the files with signatures which are not used at the training

phase and do not exist in the original files' pool. The third source is the files with

mutated signatures that are produced in the training phase. Knowing that, the

matching Gen for all matching runs equals 100.

The matching of Sig1 with the files' pool with 0% infected files (all the files are

benign). The results are shown in Table (18).

Table 18: The results of the matching of Sig1 with 0% infected files

Iteration
number

Mean fitness Best fitness

1 226.6609 253.00

2 226.6609 253.00

3 226.6609 253.00

4 226.6609 253.00

5 226.6609 253.00

… … …

96 226.6609 253.00

97 226.6609 253.00

98 226.6609 253.00

99 226.6609 253.00

100 226.6609 253.00

101 226.6609 253.00

As a result, the number of infected files = 0 and the Mean fitness = 226.6609.

Figure 49: The Mean fitness of matching Sig1 run with 0% infected files

www.manaraa.com

88

Table (18) and Figures (49) and (50) illustrate that none of the files are detected

as infected files, and as noticed the Mean fitness and Best fitness do not change.

This is due to the fact that all files are benign. Hence, the detection rate is 100%.

The result properly reflects the reality, and it is an accepted result.

Figure 50: The Best fitness of matching Sig1 run with 0% infected files

The matching results of Sig5 and Sig8 with the files' pool with 0% infected files

(all the files are benign) are summarized Table (19).

Table 19: The summary of matching of Sig5 and Sig8 with 0% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

Sig5 0% 0 485.3166 552.00 100%

Sig8 0% 0 1167.21 1283.00 100%

In both matching runs for Sig5 and Sig8, none of the files are detected as infected

files, and the Mean fitness and Best fitness do not change. This is due to the fact

that all files are benign. Hence, the detection rate is 100%.

The matching of Sig6 with the files pool with 5% infected files. At iteration number

5 new 100 files are added to the files' pool, with 5% of these files are infected.

The results are shown in Table (20).

www.manaraa.com

89

Table 20: The results of the matching of Sig6 with 5% infected files

Iteration
number

Mean fitness Best fitness

1 585.44804 657.00

2 585.46167 657.00

3 585.46167 657.00

4 585.46167 657.00

5 585.46167 657.00

6 585.46394 657.00

… … …

97 585.46394 657.00

98 585.46394 657.00

99 585.46394 657.00

100 585.46394 657.00

101 585.46394 657.00

As a result, the number of infected files= 28 and the Mean fitness = 636..5854.

Figure 51: The Mean fitness of matching Sig6 run with 5% infected files

Table (20) and Figure (51) show that the Mean fitness increases by 0.01363 in

the first iteration whereas it increases at the iteration number 5 by 0.00227. The

∆Mean fitness appears in the first and fifth iteration only, as a result of the

detection process. In the first iteration the matching algorithm detects the original

files in the files' pool (500), after that in the fifth iteration, when the 100 files are

added, the matching algorithm detects them.

The Best fitness does not change; this explains the straight line in Figure (52).

The number of detected files is 28 out of 30 (25+5) with a Detection rate of 93.3%,

where the 25 infected files are in the original pool, and the 5 are from the new

added pool. As a result this detection rate is accepted.

www.manaraa.com

91

Figure 52: The Best fitness of matching Sig6 run with 5% infected files

The matching results of Sig7, Sig10 and Sig11 with the files pool with 5%

infected files are summarized in Table (21). At iteration number 5 new 100 files

are added to the files' pool, with 5% of these files are infected.

Table 21: The summary of the matching of Sig7, Sig10 and Sig11 with 5% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

Sig7 5% 28 924.6069 1042.00 93.3%

Sig10 5% 28 556.9083 641.00 93.3%

Sig11 5% 28 786.5623 889.00 93.3%

For these three matching runs the Mean fitness increases at two places; at the

first iteration and iteration number 5. But the Best fitness does not change. The

details of Sig7 are displayed in Appendix (B1).

The matching of Sig1 with the files pool with 25% infected files. At iteration

number 50 new 100 files are added to the files' pool, with 25% of these files are

infected. The results are shown in Table (22).

www.manaraa.com

91

Table 22: The results of the matching of Sig1 with 25% infected files

Iteration
number

Mean fitness Best fitness

1 226.66088 253.00

2 226.76344 263.00

3 226.76344 263.00

4 226.76344 263.00

5 226.76344 263.00

… … …

50 226.76344 263.00

51 226.77833 264.00

… … …

98 226.77833 264.00

99 226.77833 264.00

100 226.77833 264.00

101 226.77833 264.00

As a result, the number of infected files= 142 and the Mean fitness = 226.7783.

Figure 53: The Mean fitness of matching Sig1 run with 25% infected files

Table (22) and Figure (53) show that the Mean fitness increases by 0.10256 in

the first iteration whereas it increases at the iteration number 50 by 0.01489.

The Best fitness increases at the first iteration by 10 whereas it increases at

iteration number 50 by 1 as illustrated in Figure (54). The number of detected files

is 142 out of 150 (125+25) with a Detection rate of 94.7%, where the 125 infected

files are in the original pool, and the 25 are from the new added pool. As a result

this detection rate is accepted.

www.manaraa.com

92

Figure 54: The Best fitness of matching Sig1 run with 25% infected files

The matching results of Sig2 and Sig12 with the files pool with 25% infected files

are summarized in Table (23). At iteration number 50 new 100 files are added to

the files' pool, with 25% of these files are infected.

Table 23: The summary of the matching of Sig2 and Sig12 with 25% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

Sig2 25% 142 223.7168 264.00 94.7%

Sig12 25% 142 225.3997 264.00 94.7%

The Mean fitness and the Best fitness increase in two places; in the first iteration

and iteration number 50. The run of Sig2 is represented in Appendix (B2) and

Sig12 in Appendix (B3).

The matching of Sig4 with the files pool with 50% infected files. At iteration

number 50 new 100 files are added to the files' pool, with 50% of these files are

infected. The results are shown in Table (24).

www.manaraa.com

93

Table 24: The results of the matching of Sig4 with 50% infected files

Iteration
number

Mean fitness Best fitness

1 383.23534 456.00

2 383.44178 456.00

3 383.44178 456.00

4 383.44178 456.00

5 383.44178 456.00

… … …

50 383.44178 456.00

51 383.47316 456.00

… … …

98 383.47316 456.00

99 383.47316 456.00

100 383.47316 456.00

101 383.47316 456.00

As a result, the number of infected files= 288 and the Mean fitness = 383.4732.

Figure 55: The Mean fitness of matching Sig4 run with 50% infected files

Table (28) and Figure (55) show that the Mean fitness increases by 0.20644 in

the first iteration whereas it increases at the iteration number 50 by 0.03138. The

Best fitness does not change; this explains the straight line in Figure (56). The

number of detected files is 288 out of 300 (250+50) with a Detection rate of 96%,

where the 250 infected files are in the original pool, and the 50 are from the new

added pool. As a result this detection rate is accepted.

www.manaraa.com

94

Figure 56: The Best fitness of matching Sig4 run with 50% infected files

The matching results of Sig5 and Sig8 with the files pool with 50% infected files

are recapitulated in Table (25). At iteration number 50 new 100 files are added to

the files' pool, with 50% of these files are infected.

Table 25:The summary of the matching of Sig5 and Sig8 with 50% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

Sig5 50% 288 485.4011 552.00 96%

Sig8 50% 288 1167.3765 1283.00 96%

In both matching runs the Mean fitness increases at two places; in the first

iteration and iteration number 50. The Best fitness does not change. Sig5 is

presented in Appendix (B4).

The matching of Sig1 with the files pool with 75% infected files. At iteration

number 5 new 100 files are added to the files' pool, with 75% of these files are

infected. The results are shown in Table (26).

www.manaraa.com

95

Table 26: The results of the matching of Sig1 with 75% infected files

Iteration
number

Mean fitness Best fitness

1 226.66088 253.00

2 226.96526 284.00

3 226.96526 284.00

4 226.96526 284.00

5 226.96526 284.00

6 226.99669 290.00

… … …

97 226.99669 290.00

98 226.99669 290.00

99 226.99669 290.00

100 226.99669 290.00

101 226.99669 290.00

As a result, the number of infected files= 406 and the Mean fitness = 226.9967.

Figure 57: The Mean fitness of matching Sig1 run with 75% infected files

Table (26) and Figure (57) show that the Mean fitness increases by 0.30438 in

the first iteration whereas it increases at the iteration number 5 by 0.03143.

The Best fitness increases at the first iteration by 31 whereas it increases at

iteration number 5 by 6 as illustrated in Figure (58). The number of detected files

is 406 out of 450 (375+75) with a Detection rate of 90.2%, where the 375 infected

files are in the original pool, and the 75 are from the new added pool. As a result

this detection rate is accepted.

www.manaraa.com

96

Figure 58: The Best fitness of matching Sig1 run with 75% infected files

The matching results of Sig3, Sig6, Sig9 and Sig12 with the files pool with 75%

infected files are recapitulated in Table (27). At iteration number 5 new 100 files

are added to the files' pool, with 75% of these files are infected.

Table 27: The summary of the matching of Sig3, Sig6, Sig9 and Sig12 with 75% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

Sig3 75% 406 253.7394 293.00 90.2%

Sig6 75% 406 585.6786 657.00 90.2%

Sig9 75% 406 1167.5172 1261.00 90.2%

Sig12 75% 406 225.6177 290.00 90.2%

In all the above mentioned matching runs the Mean fitness increases at two

places; in the first iteration and iteration number 5. The Best fitness does not

change except for Sig12, which is illustrated in Appendix (B5).

The matching of Sig2 with the files pool with 100% infected files. At iteration

number 50 new 100 files are added to the files' pool, with 100% of these files are

infected. The results are shown in Table (28).

www.manaraa.com

97

Table 28: The results of the matching of Sig2 with 100% infected files

Iteration
number

Mean fitness Best fitness

1 223.59950 251.00

2 224.00908 305.00

3 224.00908 305.00

4 224.00908 305.00

5 224.00908 305.00

… … …

50 224.00908 305.00

51 224.05698 312.00

… … …

97 224.05698 312.00

98 224.05698 312.00

99 224.05698 312.00

100 224.05698 312.00

101 224.05698 312.00

As a result, the number of infected files = 554 and the Mean fitness = 224.0570.

Figure 59: The Mean fitness of matching Sig2 run with 100% infected files

Table (28) and Figure (59) show that the Mean fitness increases by 0.40958 in

the first iteration whereas it increases at the iteration number 50 by 0.04790.

The Best fitness increases at the first iteration by 54 whereas it increases at

iteration number 50 by 7 as illustrated in Figure (60). The number of detected files

is 554 out of 600 (500+100) with a Detection rate of 92.3%, where the 500

infected files are in the original pool, and the 100 are from the new added pool.

As a result this detection rate is accepted.

www.manaraa.com

98

Figure 60: The Best fitness of matching Sig2 run with 100% infected files

The matching results of Sig4, Sig7, Sig10, Sig11 and Sig12 with the files pool

with 100% infected files are summarized in Table (29). At iteration number 50

new 100 files are added to the files' pool, with 100% of these files infected.

Table 29: The summary of the matching of Sig4, Sig7, Sig10, Sig11 and Sig12 with 100% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

Sig4 100% 554 383.6928 456.00 92.3%

Sig7 100% 554 925.0413 1042.00 92.3%

Sig10 100% 554 557.3427 641.00 92.3%

Sig11 100% 554 786.9967 889.00 92.3%

Sig12 100% 554 225.7399 312.00 92.3%

In all the above mentioned matching runs the Mean fitness increases at two

places; in the first iteration and iteration number 50. The Best fitness does not

change except for Sig12, which is viewed in Appendix (B6).

4.2.1 The Matching Phase Analysis
The results of the runs of the matching phase, which includes 24 runs, are

summarized in Tables (30) and (31).

Table (30) explains the ∆Best fitness (the change in the Best fitness), the Mean

fitness and the ∆Mean fitness (the change in the Mean fitness).

www.manaraa.com

99

 ∆Best fitness: in some cases of the matching the Best fitness changes, while

in other cases it does not. The change in the Best fitness depends on the

repetition of the signatures that have the higher fitness in the initial signatures'

pool, where this repetition leads to increasing the value of the Best fitness.

It is noticed in Table (30), that the change happens in 7 cases. The cases are

Sig1, Sig2 and Sig12 with the matching pool with 25% infected files, Sig1 and

Sig12 with the matching pool with 75% infected files, and Sig2 and Sig12 with

the matching pool with 100% infected files.

The reason for the change in the Best fitness is that in the training phase for

Sig1, Sig2 and Sig12, the training pool equals 5% and the learning Gen equals

100.

 The meaning of having the training pool with 5% of infected files is that there

are 25 infected files out of 500 files. In the detection process in the training

phase, only 17 files are detected out of 25 files, because in the training phase,

the VDC algorithm takes half of the signatures with the higher fitness to

operate on them. (Based on the diligence of the researcher, the half of the

signatures has been chosen to speed up the algorithm, and because matching

is doing the actual detection of the viruses). The detection of the 17 files has

caused the increase by on the fitness for only these 17 files, which have

signatures with the higher fitness. The other reason for having an increase in

the fitness is the Hypermutation process. In each generation the VDC

algorithm chooses 11 mutated signatures with the higher fitness (after the

Hypermutation process) and adds them to the signatures pool of the following

generation. So when the learning Gen increases, the number of new

signatures that have the higher fitness increases, which increases the Best

fitness of the signature pool, and because the learning Gen of Sig1, Sig2 and

Sig12 is 100, so the increase of the Best fitness is less than for Sig3 that has

the learning Gen of 300. And though the training pool of Sig3 is 5%, the Best

fitness does not change for Sig3 because its learning Gen =300, which leads

to lifting up the ceiling of the Best fitness in the training phase, so when

matching is done of this high ceil, it does not show any change in the Best

fitness.

www.manaraa.com

111

As for the rest of the cases of the matching runs (24 – 7 = 17 where 3 cases

out of the 17 have the matching pool with 0% of infected files, to end up with

14 cases), the training pool of these 14 runs is either with 25% or 75% of

infected files. When the training pool = 25%, the infected files are 125 files out

of 500 files, the detection has been done on 103 files, which means adding

to the fitness of 103 signatures (which are the signatures with the higher

fitness within the half), so the increase in the Best fitness happens in the

training phase, and when the matching is processed the Best fitness does not

change. And when the training pool= 75%, the infected files are 375 files out

of 500 files. The detection has been done on the average of 304 of the files,

which are a large number of signatures that is added to them, and that

leads to the increase in the Best fitness in the training phase, and when the

matching is processed the Best fitness does not change.

www.manaraa.com

111

Table 30: The matching results

Signatur
es

Pool

Learni
ng

Gen
Pm Fat

Traini
ng

Files'
pool

Matchi
ng

Pool

∆
Best
fitnes

s

Mean
fitness

∆
Mean
fitnes

s

Sig6 150 0.2 0.0
5

25% 5% 0 585.46
39

0.015
90

Sig7 100 0.2 0.0
5

75% 5% 0 924.60
69

0.023
12

Sig10 100 0.2 0.0
5

25% 5% 0 556.90
83

0.023
12

Sig11 100 0.2 0.1
0

75% 5% 0 786.56
23

0.023
13

Sig1 100 0.0
5

0.0
5

5% 25% 11 226.77
83

0.117
45

Sig2 100 0.1 0.0
5

5% 25% 11 223.71
68

0.117
26

Sig12 100 0.0
5

0.1 5% 25% 12 225.39
97

0.117
26

Sig4 100 0.0
5

0.0
5

25% 50% 0 383.47
32

0.237
82

Sig5 300 0.1 0.1 25% 50% 0 485.40
11

0.084
44

Sig8 150 0.1 0.1 75% 50% 0 1167.4 0.163
54

Sig1 100 0.0
5

0.0
5

5% 75% 37 226.99
67

0.335
81

Sig3 300 0.0
5

0.1 5% 75% 0 253.73
94

0.119
02

Sig6 150 0.2 0.0
5

25% 75% 0 585.67
86

0.230
55

Sig9 300 0.0
5

0.1 75% 75% 0 1167.5 0.119
03

Sig12 100 0.0
5

0.1 5% 75% 38 225.61
77

0.335
26

Sig2 100 0.1 0.0
5

5% 100% 61 224.05
7

0.457
48

Sig4 100 0.0
5

0.0
5

25% 100% 0 383.69
28

0.457
48

Sig7 100 0.2 0.0
5

75% 100% 0 925.04
13

0.457
47

Sig10 100 0.2 0.0
5

25% 100% 0 557.34
27

0.457
47

Sig11 100 0.2 0.1 75% 100% 0 786.99
67

0.457
48

Sig12 100 0.0
5

0.1 5% 100% 60 225.73
99

0.457
47

www.manaraa.com

112

 The Mean fitness and the ∆ Mean fitness: Table (30) shows the change in the

Mean fitness in all the cases of the matching. There are 5 variables that affect

the Mean fitness or the ∆Mean fitness: matching pool, Pm, Fat, Learning Gen

and training pool.

1. Matching pool: When the number of infected files inside the matching pool

increases, the Mean Fitness for that pool increases with a small value. For sig6,

when the matching pool = 5%, the Mean Fitness = 585.4634, and when the

matching pool = 75%, the Mean Fitness = 585.6786.The deviation is 0.2152.

Another example is sig10, when the matching pool = 5%, the Mean Fitness =

556.9083, and when the matching pool = 100%, the Mean Fitness = 557.342.

The deviation is 0.4344. It is noticed that both deviations are in small values.

It is noticed that it is the main operative that affects the change in the Mean

fitness, as when infected files increase inside the matching pool, the ∆Mean

fitness is larger. For example: when the matching pool=5%, the ∆Mean fitness

is between 0.01590 and 0.02313, while when the matching pool=100%, the

∆Mean fitness is between 0.45797 and 0.45748. As shown in the whole table

the ∆Mean fitness ranges between 0.01590 as a lower value, when the

matching pool =5%, and 0.45748 as a higher value when the matching pool

=100%.

The reason for having the matching pool operative as the main effect on the ∆Mean

fitness is that the detection of the infected files increases the fitness by for each

infected file, and hence increases the Mean fitness.

2. Pm: when all the variables are fixed, and Pm is changed as in the following 2

cases:

1st: when the matching pool=25%, for Sig1 when Pm=0.05 and Sig2 when Pm

= 0.1 the deviation between the Mean fitness of Sig1 and Sig2 equals

3.0165 in favor of Sig1, and the deviation between the ∆Mean fitness of

Sig1 and the ∆Mean fitness of Sig2 equals 0.00019, where in Sig1 with the

Pm of 0.05, the ∆Mean fitness is higher.

www.manaraa.com

113

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig1 100 0.05 0.05 5% 25% 11 226.7783 0.11745

Sig2 100 0.1 0.05 5% 25% 11 223.7168 0.11726

2nd: when the matching pool=100%, for Sig4, when Pm=0.05, and Sig10 when

Pm = 0.2, the deviation between the Mean fitness of Sig4 and Sig10 equals

173.7899 in favor of Sig10, and the deviation between the ∆Mean fitness of

Sig4 and the ∆Mean fitness of Sig10 equals 0.00001, where in Sig4 with

the Pm of 0.05, the ∆Mean fitness is higher.

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig4 100 0.05 0.05 25% 100% 0 383.6928 0.45748

Sig10 100 0.2 0.05 25% 100% 0 557.3427 0.45747

3. Fat: when all the variables are fixed, and Fat is changed as in the following 3

cases:

1st: when the matching pool=5%, with the Fat of Sig7 =0.05, and the Fat of

Sig11 = 0.1, the deviation between the Mean fitness of Sig7 and Sig11

equals 138.0446 in favor of Sig7, and the deviation between the ∆Mean

fitness of Sig7 and the ∆Mean fitness of Sig11 equals 0.00001, where in

Sig11 with the Fat = 0.1, the ∆Mean fitness is higher.

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig7 100 0.2 0.05 75% 5% 0 924.6069 0.02312

Sig11 100 0.2 0.10 75% 5% 0 786.5623 0.02313

2nd: when the matching pool=75%, with the Fat of Sig1 =0.05, and the Fat of

Sig12 = 0.1, the deviation between the Mean fitness of Sig1 and Sig12

equals 1.379 in favor of Sig1, and the deviation between the ∆Mean fitness

of Sig1 and the ∆Mean fitness of Sig12 equals 0.00055, where in Sig1 with

the Fat = 0.05, the ∆Mean fitness is higher.

www.manaraa.com

114

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig1 100 0.05 0.05 5% 75% 37 226.9967 0.33581

Sig12 100 0.05 0.1 5% 75% 38 225.6177 0.33526

3rd: when the matching pool=100%, with the Fat of Sig7 =0.05, and the Fat of

Sig11 = 0.1, the deviation between the Mean fitness of Sig7 and Sig11

equals 138.0446 in favor of Sig7, and the deviation between the ∆Mean

fitness of Sig7 and the ∆Mean fitness of Sig11 equals 0.00001, where in

Sig11 with the Fat = 0.1, the ∆Mean fitness is higher.

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig7 100 0.2 0.05 75% 100% 0 925.0413 0.45747

Sig11 100 0.2 0.1 75% 100% 0 786.9967 0.45748

* Note: the effect of these 2 variables (Pm and Fat) is discussed later after

processing the GA.

4. Training pool: when all variables are fixed, and the change is in the training pool

as in the following 3 cases:

1st: when the matching pool =5%, with the training pool of Sig7=75% and the

training pool of Sig10=25%, the deviation between the Mean fitness of Sig7

and Sig10 equals 367.6986 in favor of Sig10, and the ∆ Mean fitness does

not change.

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig7 100 0.2 0.05 75% 5% 0 924.6069 0.02312

Sig10 100 0.2 0.05 25% 5% 0 556.9083 0.02312

2nd: when the matching pool =75%, with the training pool of Sig3=5% and the

training pool of Sig9=75%, the deviation between the Mean fitness of Sig3

and Sig9 equals 913.7608 in favor of Sig9, and the deviation between the

∆Mean fitness of Sig3 and the ∆Mean fitness of Sig9=0.00001, where in

Sig9 with the training pool of 75%, the ∆Mean fitness is higher.

www.manaraa.com

115

Signatures
pool

Learning
Gen

Pm Fat

Training
Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig3 300 0.05 0.1 5% 75% 0 253.7394 0.11902

Sig9 300 0.05 0.1 75% 75% 0 1167.5 0.11903

3rd: when the matching pool =100%, with the training pool of Sig7=75% and the

training pool of Sig10=25%, the deviation between the Mean fitness of Sig7

and Sig10 equals 367.6986 in favor of Sig7, and the ∆Mean fitness does

not change.

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig7 100 0.2 0.05 75% 100% 0 925.0413 0.45747

Sig10 100 0.2 0.05 25% 100% 0 557.3427 0.45747

During the training phase process, the training pool affects the fitness by

increasing the Mean fitness, when the training phase produces the signatures'

pools that are used in the matching phase. During the matching phase, the effect

of the training pool does not appear on the ∆Mean fitness, because it is already

appearing in the first phase (training), but it affects the Mean fitness.

5. Learning Gen: when all variables are fixed, and the change is in the learning

Gen as in the following 2 cases:

1st: when the matching pool =5%, with the learning Gen of Sig6=150, and the

learning Gen of Sig10=100, the deviation between the Mean fitness of Sig6

and Sig10 equals 28.5556 in favor of Sig6, and the deviation between the

∆Mean fitness of Sig6 and the ∆Mean fitness of Sig10=0.00722, where in

Sig10 with the learning Gen of 100, the ∆Mean fitness is higher.

Signatures
pool

Learning
Gen

Pm Fat
Training

Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig6 150 0.2 0.05 25% 5% 0 585.4639 0.01590

Sig10 100 0.2 0.05 25% 5% 0 556.9083 0.02312

2nd: when the matching pool =75%, with the learning Gen of Sig3=300, and the

learning Gen of Sig12=100, the deviation between the Mean fitness of Sig3

and Sig12 equals 28.1217 in favor of Sig3, and the deviation between the

∆Mean fitness of Sig3 and the ∆Mean fitness of Sig12=0.21624, where in

Sig12 with the learning Gen of 100, the ∆Mean fitness is higher.

www.manaraa.com

116

Signatures
pool

Learning
Gen

Pm Fat

Training
Files'
pool

Matching
Pool

∆ Best
fitness

Mean
fitness

∆ Mean
fitness

Sig3 300 0.05 0.1 5% 75% 0 253.7394 0.11902

Sig12 100 0.05 0.1 5% 75% 38 225.6177 0.33526

 It is noticed that when the learning Gen value is higher, the Mean fitness increases

by a small value, and when the learning Gen value is less, the ∆Mean fitness is

higher significantly. The reason for that is when the learning Gen is high, the effect

of Hypermutation is higher than the detection, which decreases the deviation in

the fitness rate. Although the detection increases the fitness by (=10) each time,

however, when the number of Hypermutation is large, it increases the fitness by 1

so many times, so the increase of the Hypermutation is larger.

One should keep in mind that even the Hypermutation process exists only in the

training phase, and the main influence on the fitness in the matching phase is the

detection, though Hypermutation affects the production of signatures' pools, which

are used in the matching phase.

Table (31) shows the detection rate on the 24 matching runs, where in the case of

0% of infected files (all files are benign), the detection rate is 100% as it has

detected zero number of infected files, and this is the false positive testing which

is considered as a good result.

Table 31: The detection rate of the matching results

Matching
pool

Signatures' pools
Detection

rate

0% Sig1, Sig5, Sig8 100%

5% Sig6, Sig7, Sig10, Sig11 93.3%

25% Sig1, Sig2, Sig12 94.7%

50% Sig4, Sig5, Sig8 96%

75% Sig1, Sig3, Sig6, Sig9, Sig12 90.2%

100% Sig2, Sig4, Sig7, Sig10, Sig11, Sig12 92.3%

The Average of detection rate 94.4%

www.manaraa.com

117

As for the detection rate of viruses for the rest of the files' pools (5%, 25%, 50%,

75% and 100% of infected files), it ranges between 90.2% and 94.7% with the

average for the detection rate on all cases is 94.4%, which is considered as good

from the researcher point of view.

The procedures that have been applied through the training and matching phases

show that the use of the VDC algorithm is good in detecting the computer viruses,

and hence this answers the first question of the research questions.

www.manaraa.com

118

Chapter Five
 The Optimization of the VDC Algorithm using the GA

This chapter includes the process of using the GA as an optimizer for the VDC

algorithm. The results after optimizing the VDC algorithm are compared to the

results of the standard VDC algorithm viewed at the previous chapter.

This part answers the second and third questions of the research questions, and

they are: "Are the AIS (VDC) and GA applicable for solving the problem of

computer viruses detection?" and "Will the tuning process by GA improve

the AIS (VDC) algorithm accuracy, or not?"

Chapter five is divided into two sections: the optimized VDC algorithm based on

GA, and the comparison between the results of the VDC algorithm, and the results

of the optimized VDC algorithm based on GA.

5.1. The Optimized VDC Algorithm based on GA

The employed GA in this research is the genetic algorithm toolbox under MATLAB,

where the VDC algorithm is called as the Fitness function for the GA. The VDC

algorithm is pre-appended with the minus sign to maximize the problem. The inputs

are the Pm and Fat, and the output is the Mean fitness.

The purpose of applying the GA is to find the best values of the Pm and Fat, to

tune these values in order to get better optimized algorithm.

In this section, there are three processes:

1. GA optimization: the process to find the values of the Pm and Fat by using

the GA.

2. GA training: to employ the values resulted from the first process to build

the signatures' pools.

3. GA matching: to do testing for the signatures' pools, which resulted from the

previous process.

www.manaraa.com

119

5.1.1 GA Optimization

 This process aims to find the values of Pm and Fat after executing the GA with

the VDC algorithm; in order to compare the results of using these values with the

results of chapter four.

There are two kinds of parameters for the GA; general parameters for the toolbox,

and specific parameters. The specific parameters are the Pm and the Fat.

The general parameters, which are five, consist of the number of variables, the

lower bound, the upper bound, the initial population type, and the GA generations

as a stopping criterion.

The number of variables equals 2. These 2 are the specific parameters Pm and

Fat.

The lower bound = [0.01, 0.02] is the lowest value for each of the two specific

parameters, where the lower value for the Pm is 0.01, which represents the lowest

rate of the Hypermutation probability. The lowest value for the Fat is 0.02, and this

represents the number of elements per clone to be at least 2.

The upper bound = [1, 1] for the two specific parameters is 1, and it represents the

higher value for both of them. The initial population type is double vector, which

means real values. The GA generations (GA Gen) which is the number of times

the GA is executed, which equals 10 for each run, and the total number of runs is

four.

There are as well 3 specific changes on the VDC algorithm, to be able to use it

with the GA. First on the number of elements to be cloned (Cloning), the second

is the Files' pool used with the GA, and the third is the number of generations for

the VDC algorithm, when it is called by the GA.

The number of elements to be cloned is the half size of the signatures' pool in the

original algorithm, according to the equation 3.3. This number is changed to a fixed

value equaling 50, to speed up the algorithm.

The files' pools that are used when performing the GA have the values 5%, 25%,

50% and 75% as illustrated in Table (32) in the column GA pool. The number of

generations that the VDC algorithm is executed on is illustrated in Table (32) in the

column GA VDC Gen.

www.manaraa.com

111

The values GA Gen=10, Cloning=50 and GA VDC Gen = (10, 20, 30) are chosen

to speed up extracting the results. The researcher has conducted several

experiments, and when using higher values, it has needed longer time but without

getting any results, keeping in mind that the used computers are micro-computers.

The researcher is not able to get a computer with high CPU properties enough to

conduct these experiments with higher values.

Table 32: The GA Optimization Runs Specifications

Run GA VDC Gen GA pool GA Gen

1 10 5% 10

2 20 50% 10

3 30 25% 10

4 10 75% 10

The first GA optimization run parameters are: the GA VDC Gen=10, the GA pool

= 5% and the GA Gen = 10. The resulted Pm = 0.636, and the resulted Fat =0.935,

as shown in Figure (61).

Figure 61: The Current Best Individual in the first GA optimization run

Figure (62) presents the Best and Mean fitness for each GA generation. The Best

fitness is fixed for all generations, while the Mean fitness has changed with the

highest value of 380.2162. As has been mentioned previously the GA looks for the

minimization by default, that is why the minus sign is added to make it search for

the maximization. So considering that these values are multiplied by the minus

sign, the highest value is actually the lowest value in the figure.

www.manaraa.com

111

Figure 62: The Mean & Best Fitness in the first GA optimization run

The second GA optimization run parameters are: the GA VDC Gen=20, the

GA pool = 50% and the GA Gen = 10. The resulted Pm = 0.96, and the resulted

Fat = 1.0, as illustrated in Figure (63).

Figure 63: The Current Best Individual in the second GA optimization run

Figure (64) demonstrates the Best and Mean fitness for each GA generation.

The Best fitness is fixed for all generations, while the Mean fitness has changed

with the highest value of 2540.2172.

www.manaraa.com

112

Figure 64: The Mean & Best Fitness in the second GA optimization run

The third GA optimization run parameters are: the GA VDC Gen=30, the GA

pool = 25% and the GA Gen = 10. The resulted Pm =0.65, and the resulted Fat

=0.96, as exhibited in Figure (65).

Figure 65: The Current Best Individual in the third GA optimization run

Figure (66) views the Best and Mean fitness for each GA generation. The Best

fitness is fixed for all generations, while the Mean fitness has changed with the

highest value of 1260.2085.

www.manaraa.com

113

Figure 66: The Mean & Best Fitness in the third GA optimization run

The forth GA optimization run parameters are: the GA VDC Gen=10, the GA

pool = 75% and the GA Gen = 10. The resulted Pm = 0.914, and the resulted

Fat = 0.935, as shown in Figure (67).

Figure 67: The Current Best Individual in the forth GA optimization run

Figure (68) presents the Best and Mean fitness for each GA generation. The

Best fitness is fixed for all generations, while the Mean fitness has changed

with the highest value of 3650.226.

www.manaraa.com

114

Figure 68: The Mean & Best Fitness in the forth GA optimization run

After executing the 4 runs, Pm and Fat values have resulted, as illustrated in

Table (33), and these values are used in the next process; the GA training.

Table 33: The GA optimization results

Run Pm Fat GA objective function value

1 0.636 0.935 380.2162

2 0.96 1.0 2540.2172

3 0.65 0.96 1260.2085

4 0.914 0.935 3650.2226

5.1.2 GA Training
The GA training process includes the production of the signatures' pools, and uses

the Pm and Fat which resulted in the GA optimization. For each GA optimization

run, there is a GA training run, to end up having 4 training runs. The results of the

first run are used to produce SigGA1, while the results of the second run are

employed to create SigGA2, and the results of the third run are utilized to make

SigGA3, whereas the results of the forth run are exploited to construct SigGA4, as

illustrated in Table (34).

www.manaraa.com

115

Table 34: The GA training runs specifications

Run

GA

signatures'

pool

GA

Learning

Gen

GA

Training

pool

Pm Fat
GA VDC

Gen

1 SigGA1 100 5% 0.636 0.935 10

2 SigGA2 100 50% 0.96 1.0 20

3 SigGA3 100 25% 0.65 0.96 30

4 SigGA4 100 75% 0.914 0.935 10

The first GA training run parameters are: GA Learning Gen=100, Pm=0.636 and

Fat = 0.935, and the files' pool is with 5% of infected files and the produced

signatures' pool is saved as SigGA1. The results of the first run are shown in Table

(35), where each iteration corresponds to the number of signatures in the

signatures' pool. On the first iteration, the number of signatures value is 100 and,

it is increased by 11 signatures or less in each iteration, to have at the last iteration

1200 signatures.

The selection threshold ranges between 0.6 and 1.0; this threshold determines the

selection process stochastically.

The Mean Fitness increases at a rapid rate in the beginning, then the increase

continues at a slower rate; at first it increases at a higher changing rate reaching

16.9, after that the rate increases to reach 14.57 in the second iteration, to become

35.89 in the third iteration, till it reaches around 0.74 in the last five iterations, as

shown in Table (35).

While the Best Fitness increases quickly in the first iteration only, and later on the

increase becomes slower; in the first iteration the changing rate is 163 for the Best

Fitness, after that it increases by 1 in each iteration. Figure (69) represents the

Mean Fitness and the Best Fitness.

www.manaraa.com

116

Table 35: The first GA training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.90 160.12 211.00

2 111 1.00 177.02 374.00

3 122 0.70 191.59 375.00

4 133 0.60 227.48 376.00

5 144 0.90 255.39 377.00

… … … … …

96 1145 0.80 441.50 468.00

97 1156 0.70 442.23 469.00

98 1167 0.80 443.01 470.00

99 1178 0.70 443.73 471.00

100 1189 1.00 444.51 472.00

101 1200 0.90 445.23 473.00

As a result, the number of detected infected files is 17 out of 25 (as it is the training

phase, the researcher decides to take half the size of the signatures' pool as

mentioned in section 3.1), and the Mean fitness = 445.2282.

Figure 69: The first GA training run Mean Fitness & Best Fitness

The initial population is exhibited in Figure (70) in a solid line (The same initial

population is demonstrated in Figure (24)), while the final population which

includes the new signatures after Hypermutation is presented by dotted line. This

figure shows that the fitness of the new mutated signatures is higher.

www.manaraa.com

117

Figure 70: The first GA training run final population

The second GA training run parameters are: GA Learning Gen=100, Pm=0.96

and Fat = 1.0, and the files' pool with 50% of infected files and the produced

signatures' pool is saved as SigGA2. The results of the second run are presented

in Table (36), where each iteration corresponds to the number of signatures in the

signatures' pool. On the first iteration, the number of signatures value is 100 and,

it is increased by 11 signatures or less in each iteration, to have at the last iteration

1200 signatures.

The selection threshold ranges between 0.6 and 1.0; this threshold determines the

selection process stochastically.

The Mean Fitness increases at a rapid rate in the beginning, then the increase

continues at a slower rate; at first it increases at a higher changing rate reaching

17.33, after that the rate increases to reach 49.38 in the second iteration, to

become 391.58 in the third iteration and so on, till it reaches around 0.74 in the

last five iterations, as shown in Table (36).

While the Best Fitness increases quickly in the first iteration only, and later on the

increase becomes slower; in the first iteration the changing rate is 2313 for the

Best Fitness, after that it increases by 1 in each iteration. Figure (71) demonstrates

the Mean Fitness and the Best Fitness.

www.manaraa.com

118

Table 36: The second GA training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 1.00 160.10 211.00

2 111 0.60 177.43 2524.00

3 122 1.00 226.81 2525.00

4 133 0.60 618.39 2526.00

5 144 0.80 942.18 2527.00

… … …

96 1145 0.70 2591.51 2618.00

97 1156 0.80 2592.24 2619.00

98 1167 0.90 2593.00 2620.00

99 1178 0.80 2593.74 2621.00

100 1189 0.80 2594.51 2622.00

101 1200 0.80 2595.23 2623.00

As a result, the number of detected infected files is 232 out of 250, and the Mean

fitness = 2595.2000.

Figure 71: The second GA training run Mean Fitness & Best Fitness

The initial population is exhibited in Figure (72) in a solid line, while the final

population which includes the new signatures after Hypermutation is presented by

dotted line. This figure shows that the fitness of the new mutated signatures is

higher.

www.manaraa.com

119

Figure 72: The second GA training run final population

The third GA training run parameters are: GA Learning Gen=100, Pm=0.65 and

Fat = 0.96, and the files' pool is with 25% of infected files, and the produced

signatures' pool is saved as SigGA3. The results of the third run are viewed in

Table (37), where each iteration corresponds to the number of signatures in the

signatures' pool. On the first iteration, the number of signatures value is 100 and,

it is increased by 11 signatures or less in each iteration, to have the last iteration

with 1200 signatures.

The selection threshold ranges between 0.6 and 1.0; this threshold determines the

selection process stochastically.

The Mean Fitness increases at a rapid rate in the beginning, then the increase

continues at a slower rate; at first it increases at a higher changing rate reaching

17.05, after that the rate increases to reach 26.88 in the second iteration, to

become 161.62 in the third iteration, till it reaches around 0.74 in the last five

iterations, as shown in Table (37).

While the Best Fitness increases quickly in the first iteration only, and later on the

increase becomes slower; in the first iteration the changing rate is 923 for the Best

Fitness, after that it increases by 1 in each iteration. Figure (73) illustrates the

Mean Fitness and the Best Fitness.

www.manaraa.com

121

Table 37: The third GA training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 1.00 160.11 211.00

2 111 0.90 177.16 1134.00

3 122 0.60 204.04 1135.00

4 131 0.90 365.66 1136.00

5 142 0.60 498.16 1137.00

… … … … …

96 1145 0.60 1201.51 1228.00

97 1156 0.90 1202.23 1229.00

98 1167 0.80 1203.01 1230.00

99 1178 0.70 1203.73 1231.00

100 1189 1.00 1204.50 1232.00

101 1200 1.00 1205.23 1233.00

As a result, the number of detected infected files is 93 out of 125, and the Mean

fitness = 1205.2000.

Figure 73: The third GA training run Mean Fitness & Best Fitness

The initial population is exhibited in Figure (74) in a solid line, while the final

population which includes the new signatures after Hypermutation is presented by

dotted line. This figure shows that the fitness of the new mutated signatures is

higher.

www.manaraa.com

121

Figure 74: The third GA training run final population

The forth GA training run parameters are: GA Learning Gen=100, Pm=0.914 and

Fat = 0.935, and the files' pool with 75% of infected files and the produced

signatures' pool is saved as SigGA4. The results of the forth run are exhibited in

Table (38), where each iteration corresponds to the number of signatures in the

signatures' pool. On the first iteration, the number of signatures value is 100 and,

it is increased by 11 signatures or less in each iteration, to have at the last iteration

1200 signatures.

The selection threshold ranges between 0.6 and 1.0; this threshold determines the

selection process stochastically.

The Mean Fitness increases at a rapid rate in the beginning, then the increase

continues at a slower rate; at first it increases at a higher changing rate reaching

17.42, after that the rate increases to reach 57.01 in the second iteration, to

become 469.3 in the third iteration and so on, till it reaches around 0.74 in the last

five iterations, as shown in Table (38).

While the Best Fitness increases quickly in the first iteration only, and later on the

increase becomes slower; in the first iteration the changing rate is 2783 for the

Best Fitness, after that it increases by 1 in each iteration. Figure (75) displays the

Mean Fitness and the Best Fitness.

www.manaraa.com

122

Table 38: The forth GA training run results

Iteration
number

No of
signatures

Selection
threshold

Mean
fitness

Best
fitness

1 100 0.90 160.12 211.00

2 111 1.00 177.54 2994.00

3 122 0.70 234.55 2995.00

4 133 0.60 703.85 2996.00

5 144 0.90 1092.34 2997.00

… … … … …

96 1145 0.80 3061.51 3088.00

97 1156 0.70 3062.24 3089.00

98 1167 0.80 3063.01 3090.00

99 1178 0.70 3063.73 3091.00

100 1189 1.00 3064.51 3092.00

101 1200 0.90 3065.23 3093.00

As a result, the number of detected infected files is 279 out of 375, and the Mean

fitness = 3065.200.

Figure 75: The forth GA training run Mean Fitness & Best Fitness

The initial population is exhibited in Figure (76) in a solid line, while the final

population which includes the new signatures after Hypermutation is presented by

dotted line. This figure shows that the fitness of the new mutated signatures is

higher.

www.manaraa.com

123

Figure 76: The forth GA training run final population

GA training Analysis:

After finalizing the GA Training process, which includes 4 runs, the results are

recapitulated in Table (39). The table reveals the Mean fitness, which has resulted

from defining the parameters values, GA Learning Gen, Pm, Fat, GA VDC Gen,

and the GA Training pool.

The learning Gen has been set to equal 100 for all the training cases.

As mentioned previously, the Pm and Fat control the Hypermutation process (each

Hypermutation affects the fitness by adding 1 at most). Where the Pm ranges

between 0.636 and 0.96, and the Fat ranges between 0.935 and 1.0. These values

have been gained from GA Optimization, and they are high, which increases the

Hypermutation rate. It is recalled that the GA VDC Gen has affected the choosing

of these values for Pm and Fat.

www.manaraa.com

124

Table 39: The Summary of the GA training results

GA

signatures'

pool

GA

Learning

Gen

GA

Training

pool

Pm Fat

GA

VDC

Gen

Mean

fitness

SigGA1 100 5% 0.636 0.935 10 445.2282

SigGA2 100 50% 0.96 1.0 20 2595.2

SigGA3 100 25% 0.65 0.96 30 1205.2

SigGA4 100 75% 0.914 0.935 10 3065.2

The values of the GA Training pool are 5%, 25%, 50% and 75%, and these values

are the same as used for the GA training pool in the previous step (GA

Optimization), whenever the number of infected files increases at the training files’

pool, the Mean fitness increases.

It is noticed in the results of the previous 4 runs that the number of signatures =

1200 for all of them. The reason for this is that the used GA Learning Gen is 100.

In order to produce the signatures’ pools (SigGA1 … SigGA4) for the GA matching

process, the GA training process has been performed. Consequently, further

conclusions on the GA training process lack the space and time.

5.1.3 GA Matching
The GA matching checks the signatures' pools resulted in the GA training process

where the number of runs is 10, according to Table (40).

Table 40: The GA matching runs specifications

GA Matching pool GA signatures' pool

0% SigGA2

5% SigGA4

25% SigGA1, SigGA2

50% SigGA4

75% SigGA1

100% SigGA1, SigGA2, SigGA3, SigGA4

www.manaraa.com

125

SigGA2 is tested with the files' pool with 0% infected files (all the files are benign).

The results are figured in Table (41).

Table 41: The results of the matching of SigGA2 with 0% infected files

Iteration
number

Mean fitness Best fitness

1 2329.15277 2623.00

2 2329.15277 2623.00

3 2329.15277 2623.00

4 2329.15277 2623.00

5 2329.15277 2623.00

… … …

96 2329.15277 2623.00

97 2329.15277 2623.00

98 2329.15277 2623.00

99 2329.15277 2623.00

100 2329.15277 2623.00

101 2329.15277 2623.00

As a result, the number of infected files = 0 and the Mean fitness = 2329.2.

Figure 77: The Mean fitness of matching Sig1 run with 0% infected files

As illustrated in Table (41), Figures (77) and (78), none of the files are detected as

infected files, so the Mean fitness and Best fitness do not change. This is due to

the fact that all files are benign. Hence, the detection rate is 100%. The result

properly reflects the reality, and it is an accepted result.

www.manaraa.com

126

Figure 78: The Best fitness of matching Sig1 run with 0% infected files

SigGA4 is tested with the files pool with 5% infected files. At iteration number 5,

new 100 files are added to the files' pool, with 5% of these files are infected. The

results are shown in Table (42).

Table 42: The results of the matching of SigGA4 with 5% infected files

Iteration
number

Mean fitness Best fitness

1 2752.19158 3093.00

2 2752.21140 3093.00

3 2752.21140 3093.00

4 2752.21140 3093.00

5 2752.21140 3093.00

6 2752.21470 3093.00

… … …

97 2752.21470 3093.00

98 2752.21470 3093.00

99 2752.21470 3093.00

100 2752.21470 3093.00

101 2752.21470 3093.00

As a result, the number of infected files= 28 and the Mean fitness = 2752.2.

www.manaraa.com

127

Figure 79: The Mean fitness of matching SigGA4 run with 5% infected files

Table (42) and Figure (79) show that the Mean fitness increases by 0.01982 in the

first iteration, whereas it increases at the iteration number 50 by 0.0033.

The straight line in Figure (80) is for the Best fitness, which does not change. The

number of detected files is 28 out of 30 (25+5) with a Detection rate of 93.3%,

where the 25 infected files are in the original pool, and the 5 are from the new

added pool. Hence this detection rate is accepted.

Figure 80: The Best fitness of matching SigGA4 run with 5% infected files

SigGA1 is tested with the files pool with 25% infected files. At iteration number 50,

new 100 files are added to the files' pool, with 25% of these files infected. The

results are shown in Table (43).

www.manaraa.com

128

Table 43: The results of the matching of SigGA1 with 25% infected files

Iteration
number

Mean fitness Best fitness

1 393.97523 473.00

2 394.07762 473.00

3 394.07762 473.00

4 394.07762 473.00

5 394.07762 473.00

… … …

50 394.07762 473.00

51 394.09249 473.00

… … …

98 394.09249 473.00

99 394.09249 473.00

100 394.09249 473.00

101 394.09249 473.00

As a result, the number of infected files=142 and the Mean fitness= 394.0925.

Figure 81: The Mean fitness of matching SigGA1 run with 25% infected files

Table (43) and Figure (81) show that the Mean fitness increases by 0.10239 in the

first iteration whereas it increases at the iteration number 50 by 0.01487.

The Best fitness does not change; this explains the straight line in Figure (82). The

number of detected files is 142 out of 150 (125+25) with a Detection rate of 94.7%,

where the 125 infected files are in the original pool, and the 25 are from the new

added pool. Hence this detection rate is accepted.

www.manaraa.com

129

Figure 82: The Best fitness of matching SigGA1 run with 25% infected files

SigGA2 is tested with the files pool with 25% infected files. At iteration number 50,

new 100 files are added to the files' pool, with 25% of these files infected. The

results summary is shown in Table (44).

Table 44: The summary of the GA matching results of SigGA2 with 25% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

SigGA2 25% 142 2329.2700 263.00 94.7%

In the matching of SigGA2 the Mean fitness increases at two places; in the first

iteration and iteration number 50. The Best fitness does not change. SigGA2 is

illustrated in Appendix (C1).

The matching of SigGA4 with the files pool with 50% infected files. At iteration

number 50, new 100 files are added to the files' pool, with 50% of these files

infected. The results are shown in Table (45).

www.manaraa.com

131

Table 45: The results of the matching of SigGA4 with 50% infected files

Iteration
number

Mean fitness Best fitness

1 2752.19158 3093.00

2 2752.39802 3093.00

3 2752.39802 3093.00

4 2752.39802 3093.00

5 3093.00

… …

50 2752.39802 3093.00

51 2752.42940 3093.00

… …

98 2752.42940 3093.00

99 2752.42940 3093.00

100 2752.42940 3093.00

101 2752.42940 3093.00

As a result, the number of infected files=288 and the Mean fitness= 2752.4.

Figure 83: The Mean fitness of matching SigGA4 run with 50% infected files

Table (45) and Figure (85) show that the Mean fitness increases by 0.20644 in the

first iteration whereas it increases at the iteration number 50 by 0.03138.

The Best fitness does not change; this explains the straight line in Figure (86). The

number of detected files is 288 out of 300 (250+50) with a Detection rate of 96.0%,

where the 250 infected files are in the original pool, and the 50 are from the new

added pool. As a result this detection rate is accepted.

www.manaraa.com

131

Figure 84: The Best fitness of matching SigGA4 run with 50% infected files

The matching of SigGA1 with the files pool with 75% infected files. At iteration

number 5, new 100 files are added to the files' pool, with 75% of these files

infected. The results are shown in Table (46).

Table 46: The results of the matching of SigGA1 with 75% infected files

Iteration
number

Mean fitness Best fitness

1 393.97523 473.00

2 394.27911 473.00

3 394.27911 473.00

4 394.27911 473.00

5 394.27911 473.00

6 394.31049 473.00

… … …

97 394.31049 473.00

98 394.31049 473.00

99 394.31049 473.00

100 394.31049 473.00

101 394.31049 473.00

As a result, the number of infected files = 406 and the Mean fitness = 394.3105.

www.manaraa.com

132

Figure 85: The Mean fitness of matching SigGA1 run with 75% infected files

Table (46) and Figure (87) show that the Mean fitness increases by 0.30388 in the

first iteration whereas it increases at the iteration number 50 by 0.03138.

The Best fitness does not change; this explains the straight line in Figure (88). The

number of detected files is 406 out of 450 (375+75) with a Detection rate of 90.2%,

where the 375 infected files are in the original pool, and the 75 are from the new

added pool. As a result this detection rate is accepted.

Figure 86: The Best fitness of matching SigGA1 run with 75% infected files

The matching of SigGA1 with the files pool with 100% infected files. At iteration

number 50, new 100 files are added to the files' pool, with 100% of these files

infected. The results are shown in Table (47).

www.manaraa.com

133

Table 47: The results of the matching of SigGA1 with 100% infected files

Iteration
number

Mean fitness Best fitness

1 393.97523 473.00

2 394.38481 473.00

3 394.38481 473.00

4 394.38481 473.00

5 394.38481 473.00

… … …

50 394.38481 473.00

51 394.43270 473.00

… …

98 394.43270 473.00

99 394.43270 473.00

100 394.43270 473.00

101 394.43270 473.00

As a result, the number of infected files = 554 and the Mean fitness = 394.4327.

Figure 87: The Mean fitness of matching SigGA1 run with 100% infected files

Table (47) and Figure (89) show that the Mean fitness increases by 0.40958 in the

first iteration whereas it increases at the iteration number 50 by 0.04789.

The Best fitness does not change; this explains the straight line in Figure (90). The

number of detected files is 554 out of 600 (500+100) with a Detection rate of

92.3%, where the 500 infected files are in the original pool, and the 100 are from

the new added pool. As a result this detection rate is accepted.

www.manaraa.com

134

Figure 88: The Best fitness of matching SigGA1 run with 100% infected files

The matching results of SigGA2, SigGA3 and SigGA4 with the files pool with

100% infected files are recapitulated in Table (48). At iteration number 50, new

100 files are added to the files' pool, with 100% of these files infected.

Table 48: The summary of the GA matching of SigGA2, SigGA3 and SigGA4 with 100% infected files

Signatures
pool

Matching
Pool

Detected
Files

Mean
fitness

Best
fitness

Detection
Rate

SigGA2 100% 554 2329.6103 2623.00 92.3%

SigGA3 100% 554 1078.4955 1233.00 92.3%

SigGA4 100% 554 2752.6491 3093.00 92.3%

In the above mentioned matching runs the Mean fitness increases at two places;

in the first iteration and iteration number 50 by 0.04789. The Best fitness does not

change. SigGA3 is presented in Appendix (C2).

GA Matching Analysis:

The results of the GA matching process, which includes 10 runs, are summed up

in tables (49) and (50). Table (49) is elaborated in regard to:

 ∆Best fitness:

In all cases, discrepancy dose not occur in the change in the Best fitness.

This is due to the resulted values for Pm and Fat, from the GA optimization,

that are high, which has led to having high values for the Mean fitness and Best

fitness (as has been described in section 4.2.1). Consequently, the Best fitness

remains the same.

www.manaraa.com

135

 The Mean fitness and the ∆Mean fitness:

The Mean Fitness and the ∆Mean fitness change, because the following 5

Variables: Pm, Fat, GA Training Pool, GA VDC Gen, and GA Matching Pool

have changed. Hence the GA Learning Gen = 100 for all runs, it is not

considered as a variable.

For the GA Matching pool variable, when the number of infected files increases

inside the pool, the Mean Fitness increases by a small value. For SigGA4,

when the matching pool = 5%, the Mean Fitness = 2752.2, and when the

matching pool = 100%, the Mean Fitness = 2752.6 .The deviation is 0.4, which

is considered as a small value.

Notably, the GA Matching pool is the main variable that affects the ∆Mean

fitness. The reason for that is that when infected files increase in the GA

Matching pool, the ∆Mean fitness increases, because each detection increases

the fitness by .

As demonstrated in the whole table, the ∆Mean fitness ranges between

0.02312 as a lower value, when GA Matching pool = 5% and 0.45747 as a

higher value, when the GA Matching pool = 100%.

As it is noticed in Table (49), even though there have been changes in the

values of the GA Training pool, Pm and Fat, like when the GA Matching pools

equals 100%, the ∆Mean fitness value does not change, but the Mean fitness

changes.

Table 49: The GA Matching results

Signature
Pool

GA
Learning

Gen
Pm Fat

GA
Training

pool

GA
VDC
Gen

GA
Matchi

ng
Pool

∆
Best
fitnes

s

Mean
fitness

∆ Mean
fitness

SigGA4 100 0.914 0.935 75% 10 5% 0 2752.2 0.02312

SigGA2 100 0.96 1.0 50% 20 25% 0 2329.3 0.11725

SigGA1 100 0.636 0.935 5% 10 25% 0 394.0925 0.11726

SigGA4 100 0.914 0.935 75% 10 50% 0 2752.4 0.23782

SigGA1 100 0.636 0.935 5% 10 75% 0 394.3105 0.33526

SigGA1 100 0.636 0.935 5% 10 100% 0 394.4327 0.45747

SigGA2 100 0.96 1.0 50% 20 100% 0 2329.6 0.45747

SigGA3 100 0.65 0.96 25% 30 100% 0 1078.5 0.45747

SigGA4 100 0.914 0.935 75% 10 100% 0 2752.6 0.45747

The detection rate of the 10 runs appears in Table (50). The detection rate is

www.manaraa.com

136

100% in the case of 0% infected files, as it has detected zero number of

infected files. This is called the false positive testing, and is considered as a

good result.

The rest of the files' pool (5%, 25%, 50%, 75% and 100% of infected files),

have the detection rate that ranges between 90.2% and 96% with the average

of all cases equals 94.4%. According to the researcher, this is considered as a

good result, too.

The procedures that have been performed through the GA optimization, GA

training and GA matching processes illustrate that the use of the VDC algorithm

and GA are applicable for solving the problem of computer viruses detection.

This conclusion answers the second question of the dissertation questions.

Table 50: The GA Detection Rate of the GA matching Results

GA
Matching

pool
Signatures' pools

Detection
rate

0% SigGA2 100%

5% SigGA4 93.3%

25% SigGA1, SigGA2 94.7%

50% SigGA4 96%

75% SigGA1 90.2%

100% SigGA1, SigGA2, SigGA3, SigGA4 92.3%

The Average of detection rate 94.4%

5.2. The Comparison between the Standard VDC
algorithm and the Optimized VDC algorithm based on

GA
After Testing (Training and Matching processes) the standard VDC algorithm and

the optimized VDC algorithm based on GA, and obtaining the results, this section

presents a comparison between the results of each of them.

While comparing the training processes in both algorithms, Tables (17) and (39)

must be noticed, the GA improves the Mean Fitness value enormously. When the

training pool = 5% in the standard VDC, the Mean Fitness ranges between

242.2893 and 275.2660, while with the GA, the Mean Fitness equals 495.2282

www.manaraa.com

137

. And when the training pool = 25%; in the standard VDC, the Mean Fitness ranges

between 449.6050 and 642.7941, while with the GA, the Mean Fitness equals

1205.2. Finally, when the training pool = 75% in the standard VDC, the Mean

Fitness value ranges between 838.7423 and 1265.9, while with the GA, the Mean

Fitness equals 3065.2 .

The above results reveal that the GA has improved the values of the Mean Fitness

enormously in the training phase. This is because the values of the Pm and Fat

increase largely after using the GA.

The comparison of the matching processes in regard to the Mean fitness, the

∆Mean fitness and the Detection Speed. Table (51) summarizes the Mean fitness

and the ∆Mean fitness for both algorithms.

Table 51: The comparison according to the Mean fitness and the ∆ Mean fitness

Files
pool

Signatur
e pool

Mean
fitness

∆Mean
fitness

GA Signature
pool

Mean
fitness

∆Mean
fitness

0% Sig1 226.6609 0 SigGA2 2329.2 0

Sig5 485.3166 0

Sig8 1167.2 0

5% Sig6 585.4639 0.01590 SigGA4 2752.2 0.02312

Sig7 924.6069 0.02312

Sig10 556.9083 0.02312

Sig11 786.5623 0.02313

25% Sig1 226.7783 0.11745 SigGA1 394.0925 0.11726

Sig2 223.7168 0.11726 SigGA2 2329.3 0.11725

Sig12 225.3997 0.11726

50% Sig4 383.4732 0.23782 SigGA4 2752.4 0.23782

Sig5 485.4011 0.08444

Sig8 1167.4 0.16354

75% Sig1 226.9967 0.33581 SigGA1 394.3105 0.33526

Sig3 253.7394 0.11902

Sig6 585.6786 0.23055

Sig9 1167.5 0.11903

Sig12 225.6177 0.33526

100
%

Sig2 224.057 0.45748 SigGA1 394.4327 0.45747

Sig4 383.6928 0.45747 SigGA2 2329.6 0.45747

Sig7 925.0413 0.45747 SigGA3 1078.5 0.45747

Sig10 557.3427 0.45747 SigGA4 2752.6 0.45747

Sig11 786.9967 0.45748

Sig12 225.7399 0.45747

 When Matching pool = 5% there are 2 cases to compare:

1. Sig7 and SigGA4: where in both of them the learning Gen = 100 and the

Training pool =75%. They differ in the Pm and Fat values; where in Sig7 the

www.manaraa.com

138

Pm =0.2 and the Fat=0.05, and in SigGA4 the Pm=0.914 and Fat=0.935. The

mean Fitness in Sig7= 924.6069 and in SigGA4 = 2752.2, so it is clear that

the GA improves the Mean Fitness. The ∆Mean fitness =0.02312 in both of

them.

2. Sig11 and SigGA4: where in both of them the learning Gen = 100 and the

Training pool =75%. They differ in the Pm and Fat values; where in Sig11

the Pm =0.2 and the Fat=0.1, and in SigGA4 the Pm=0.914 and Fat=0.935.

The Mean Fitness in Sig11 = 786.5623 and in SigGA4 = 2752.2, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness for Sig11

=0.02312, and for SigGA4= 0.02313. This Means the deviation =0.00001,

where in Sig11, with Pm =0.2 and Fat=0.1, the ∆Mean fitness is higher.

 When Matching pool = 25% there are 3 cases to compare:

1. Sig1 and SigGA1: where in both of them the learning Gen = 100 and the

Training pool =5%. They differ in the Pm and Fat values; where in Sig1 the

Pm =0.05 and the Fat=0.05, and in SigGA1 the Pm=0.636 and Fat=0.935.

The Mean Fitness in Sig1 = 226.782 and in SigGA1 = 394.0925, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness for Sig1

=0.11745, and for SigGA1= 0.11726. This means the deviation =0.00019,

where in Sig1, with Pm =0.05 and Fat=0.05, the ∆Mean fitness is higher.

2. Sig2 and SigGA1: where in both of them the learning Gen = 100 and the

Training pool =5%. They differ in the Pm and Fat values; where in Sig2 the

Pm =0.1 and the Fat=0.05, and in SigGA1 the Pm=0.636 and Fat=0.935.

The Mean Fitness in Sig2 = 223.7168 and in SigGA1 = 394.0925, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness =0.11726

in both of them.

3. Sig12 and SigGA1: where in both of them the learning Gen = 100 and the

Training pool =5%. They differ in the Pm and Fat values; where in Sig12 the

Pm =0.05 and the Fat=0.1, and in SigGA1 the Pm=0.636 and Fat=0.935.

The Mean Fitness in Sig12 = 225.3997 and in SigGA1 = 394.0925, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness =0.11726

in both of them.

www.manaraa.com

139

 When Matching pool = 50% there are 1 case to compare:

 Sig8 and SigGA4: where in both of them the Training pool =75%. They differ

in the Learning Gen, Pm and Fat values; where in Sig8 the Learning Gen

=150, the Pm =0.1 and the Fat=0.1, and in SigGA4 the Learning Gen =100,

the Pm=0.914 and Fat=0.935. The Mean Fitness in Sig8 = 1167.4 and in

SigGA4 = 2752.4, so it is clear that the GA improves the Mean fitness. The

∆Mean fitness for Sig8 =0.16354, and for SigGA4= 0.23782. This means

the deviation =0.07428, where in SigGA4, with Learning Gen=100, Pm

=0.05 and Fat=0.05, the ∆Mean fitness is higher.

 When Matching pool = 75% there are 2 cases to compare:

1. Sig1 and SigGA1: where in both of them the training Gen = 100 and the

Training pool =5%. They differ in the Pm and Fat values; where in Sig1 the

Pm =0.05 and the Fat=0.05, and in SigGA1 the Pm=0.636 and Fat=0.935.

The Mean Fitness in Sig1 = 226.9967 and in SigGA1 = 394.3105, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness for Sig1

=0.33581, and for SigGA1= 0.33526. This means the deviation =0.00055,

where in Sig1, with Pm =0.05 and Fat=0.05, the ∆Mean fitness is higher.

2. Sig12 and SigGA1: where in both of them the learning Gen = 100 and the

Training pool =5%. They differ in the Pm and Fat values; where in Sig12 the

Pm =0.05 and the Fat=0.1, and in SigGA1 the Pm=0.636 and Fat=0.935.

The Mean Fitness in Sig12 = 225.6177 and in SigGA1 = 394.3105, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness =0.33526

in both of them.

 When Matching pool = 100% there are 6 cases to compare:

1. Sig2 and SigGA1: where in both of them the learning Gen = 100 and the

Training pool =5%. They differ in the Pm and Fat values; where in Sig2 the

Pm =0.1 and the Fat=0.05, and in SigGA1 the Pm=0.636 and Fat=0.935.

The Mean Fitness in Sig2 = 224.057 and in SigGA1 = 394.4327, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness for Sig2

=0.45748, and for SigGA1= 0.45747.

www.manaraa.com

141

This means the deviation =0.00001, where in Sig2, with Pm =0.05 and

Fat=0.05, the ∆Mean fitness is higher.

2. Sig12 and SigGA1: where in both of them the learning Gen = 100 and the

Training pool =5%. They differ in the Pm and Fat values; where in Sig12 the

Pm =0.05 and the Fat=0.1, and in SigGA1 the Pm=0.636 and Fat=0.935.

The Mean Fitness in Sig12 = 225.7399 and in SigGA1 = 394.4327, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness =0.45747

in both of them.

3. Sig4 and SigGA3: where in both of them the learning Gen = 100 and the

Training pool =25%. They differ in the Pm and Fat values; where in Sig4 the

Pm =0.05 and the Fat=0.05, and in SigGA3 the Pm=0.65 and Fat=0.96. The

Mean Fitness in Sig4 = 383.6928 and in SigGA3 = 1078.5, so it is clear that

the GA improves the Mean fitness. The ∆Mean fitness =0.45747 in both of

them.

4. Sig10 and SigGA3: where in both of them the learning Gen = 100 and the

Training pool =25%. They differ in the Pm and Fat values; where in Sig10

the Pm =0.2 and the Fat=0.05, and in SigGA3 the Pm=0.65 and Fat=0.96.

The Mean Fitness in Sig10 = 557.3427 and in SigGA3 = 1078.5, so it is

clear that the GA improves the Mean fitness. The ∆Mean fitness for Sig10

=0.45748, and for SigGA3= 0.45747. This means the deviation =0.00001,

where in Sig10, with Pm =0.2 and Fat=0.05, the ∆Mean fitness is higher.

5. Sig7 and SigGA4: where in both of them the learning Gen = 100 and the

Training pool =75%. They differ in the Pm and Fat values; where in Sig7 the

Pm =0.2 and the Fat=0.05, and in SigGA4 the Pm=0.914 and Fat=0.935.

The Mean Fitness in Sig7 = 925.0413 and in SigGA4 = 2752.6, so it is clear

that the GA improves the Mean fitness. The ∆Mean fitness =0.45747 in both

of them.

6. Sig11 and SigGA4: where in both of them the learning Gen = 100 and the

Training pool =75%. They differ in the Pm and Fat values; where in Sig11

the Pm =0.2 and the Fat=0.1, and in SigGA4 the Pm=0.914 and Fat=0.935.

www.manaraa.com

141

 The Mean Fitness in Sig11 = 786.9967 and in SigGA4 = 2752.6, so it is clear

that the GA improves the Mean fitness. The ∆Mean fitness for Sig11

=0.45748, and for SigGA4= 0.45747. This means the deviation =0.00001,

where in Sig11, with Pm =0.2 and Fat=0.1, the ∆Mean fitness is higher.

After assessing 14 comparison cases of the results from the tables (30) and (49),

The Mean fitness increases significantly, in the signatures' pool after applying the

GA, more than with the standard VDC. In 7 cases, the ∆Mean Fitness dose not

differ after getting the Fat and Pm from the GA optimization. In 6 cases the change

is small in favor of the standard VDC algorithm, before performing the optimization

using the GA. In one case only, the GA is better, not due to the using of GA, but

because the learning Gen is different, where in Sig8 the Learning Gen=150, and

in SigGA4 the Learning Gen=100.

Keeping in mind, that the values of Pm and Fat after the GA optimization are

higher, which has led to increase the Mean Fitness values in the GA training

process significantly. This differs from the suggested Fat and Pm in chapter 4,

which are less.

When the Fat and Pm values are small, the Hypermutation rate decrease, while

when their values are high, the Hypermutation rate increases, and this leads to

increase the Mean Fitness in the training process and the matching process, but

dose not improve the ∆Mean fitness in the matching phase.

The discussion above is summarized as following:

There have been 5 variables (Learning Gen, Pm, Fat, Training pool and

matching pool) that are discussed in regard to their effects on the Mean fitness

and ∆Mean Fitness, which are chosen because they can be measured.

 Learning Gen: when its value is higher, the Mean Fitness increases, in

contrary to the ∆Mean fitness. When the Learning Gen value is less, the

∆Mean Fitness is higher in the matching phase.

 Training pool: it affects the Mean fitness, as when it increases, the Mean

fitness increases. But the ∆Mean Fitness is not affected significantly.

www.manaraa.com

142

 Pm and Fat: as they both control the Hypermutation process, their effect

is combined together. When their values are small (as before using the

GA in chapter four), the Hypermutation rate decreases, and thus the Mean

fitness decreases. While when their values are high (as after using the GA

in chapter five), the Hypermutation rate increases, and consequently the

Mean fitness increases. But the increase in the Hypermutation rate does

not increase the value of the ∆Mean Fitness.

 Matching pool: whenever the number of infected files increases inside the

matching pool, the Mean fitness and the ∆Mean Fitness are higher. This

variable reflects the actual reality and it can not be controlled nor

interfered with.

The comparison of the Detection Speed is shown in Table (52). The table shows

that the time consumed during the matching phase with the standard VDC

algorithm is longer than with the GA. As when the matching pool =0%, the deviation

between the standard VDC average time and the GA average time is 9244.839616

seconds. When the matching pool =5%, the deviation between the standard VDC

average time and the GA average time is 574.582860 seconds. When the

matching pool =25%, the deviation between the standard VDC average time and

the GA average time is 3940.587127 seconds. When the matching pool =50%, the

deviation between the standard VDC average time and the GA average time is

6018.846909 seconds. When the matching pool =75%, the deviation between the

standard VDC average time and the GA average time is 2509.217777 seconds.

And when the matching pool =100%, the deviation between the standard VDC

average time and the GA average time is 0.228592 seconds.

The using of GA enhances the training process by improving the properties of the

resulted signatures' pools, in regard to producing a higher Mean fitness for these

signatures. So when the matching process is executed, the detection speed is

better and faster. This is due to the fact that before applying the detection process

in the matching, the signatures are sorted in descending order according to their

fitness, which leads to having a faster detection. The experiments shown in Table

(52) prove this result.

www.manaraa.com

143

Knowing that, all runs for each matching pool are done on the same computer, for

both the standard VDC and the GA together, in order to guarantee having the same

properties and speed of the computer. For example, for the matching pool =0%,

Sig1, Sig5, Sig8 and SigGA2 are tested on the same computer; Acer Laptop.

During the comparison between the tables (31) and (50), it is noticed that neither

the detection rate nor the false positive change.

Consequently, the results have proven that using the GA as an optimizer for the

VDC algorithm with the Fat and Pm as variables, improves the performance of the

VDC algorithm, because the Mean fitness significantly increases.

This conclusion answers the third question of the dissertation questions.

The focus is on the detection process for its importance. If the detection finds any

infected files, elimination can be done by deleting this file, or by using any of the

suitable elimination methods.

www.manaraa.com

144

Table 52: The Detection Speed summary

Matchi
ng

pool

Signat
ure
pool

Time in
Second

s

Avg Time GA
Signa
ture
pool

Time in
Seconds

GA Avg
Time

The
Deviation
(Avg Time
– GA Avg

Time)

0% Sig1 14208.6
47688

22525.823
53

SigGA
2

13280.983
914

13280.983
914

9244.8396
16
 Sig5 35171.7

66852

Sig8 18197.0
56039

5% Sig6 9823.55
273

9508.9583
63

SigGA
4

8934.3755
03

8934.3755
03

574.58286
0
 Sig7 8345.79

6465

Sig10 8407.28
3349

Sig11 11459.2
00907

25% Sig1 10311.5
81502

10504.877
563

SigGA
1

6593.6054
29

6564.2904
36

3940.5871
27
 Sig2 10743.8

21194
SigGA

2
6534.9754

43

Sig12 10459.2
29993

50% Sig4 7103.76
6218

13387.121
866

SigGA
4

7368.2749
57

7368.2749
57

6018.8469
09
 Sig5 22787.7

65619

Sig8 10269.8
33760

75% Sig1 3165.08
4227

5655.0352
32

SigGA
1

3145.8174
55

3145.8174
55

2509.2177
77
 Sig3 8762.23

8266

Sig6 4431.98
4430

Sig9 8729.63
3644

Sig12 3186.23
5592

100% Sig2 6.36820
5

6.364439

SigGA
1

6.167821 6.135847

0.228592

 Sig4 6.37853

1
SigGA

2
6.093931

Sig7 6.35973
4

SigGA
3

6.143650

Sig10 6.38850
7

SigGA
4

6.137986

www.manaraa.com

145

 Sig11 6.47753
7

Sig12 6.21412
2

www.manaraa.com

146

Chapter Six
 Conclusions and Future Work

The dissertation aims to develop an algorithm inspired from the AIS concepts to

detect viruses. The new algorithm is called the VDC algorithm. And the needed

viruses' signatures for the research are gained from the VX Heaven website.

The VDC algorithm is formed through three main steps; Cloning, Hypermutation

and reselection stochastically. Within the step of reselection stochastically, the

viruses' detection process exists, by doing the exact match between each of the

viruses' signatures and the files.

A lot of experiments have been done to validate the algorithm through two phases:

training and matching, where the needed variables are determined for each

process.

The variables for the training phase are the learning Gen, Fat, Pm, and the training

pool. This phase has produced the 12 signatures' pools, which have been tested

within the second phase (the matching). The variable for the matching phase is

the matching pool.

After that, the GA has been employed as an optimizer for the VDC algorithm

through 3 processes; the optimization, which has produced 4 different values for

the Pm and Fat. These values are used in the Training process to generate 4

signatures' pools, which are validated in the matching process.

The results of the VDC algorithm and the optimized VDC algorithm based on GA

are discussed, in chapters four and five and recapitulated in the first section. Then

a comparison with the Related Work is summarized in the second section. After

that, the Limitations are described in the third section. Finally, the

recommendations for future work are listed.

6.1. Conclusions
1. In the VDC algorithm, the following affects the fitness of the signatures by

increasing it when they are increased: the number of generations, the number

of the infected files inside the files' pool and the Hypermutation rate during the

training phase.

www.manaraa.com

147

2. Employing the GA to optimize the VDC algorithm, improves the Detection

Speed of the VDC algorithm, by increasing the Mean fitness, which leads the

algorithm to be faster in detecting viruses.

3. Regarding the average detection rate, it is 94.4% and the false positive is 0%.

These rates are considered good, and they do not change with the use of the

GA, on the contrary, they are confirmed.

4. The results of the dissertation clarify the ability of using the VDC algorithm to

detect viruses.

6.2. Comparison with Related Works
This dissertation has agreed with the studies of Castro and Zuben (2000), Castro

and Zuben (2002), Castro and Timmis (2002), Yang (2006) and Liu (2006) in

regard to addressing the AIS subject in general.

Castro and Zuben (2002) suggested the CLONALG algorithm. This algorithm has

been used in this research, but there has been a difference, as they employed the

CLONALG in Machine Learning, Pattern Recognition and Optimization Problems,

while here it has been used in Virus Detection.

The study of Castro and Timmis (2002) dealt with Clonal Selection Algorithm same

as in this research, but their study dealt as well with the Negative Selection and

the Immune Network in the pattern recognition.

Yang (2006) had the same method in applying AIS with the GA, but varied in using

it in the Dynamic Environments.

The study of Liu et al (2006) was of the same opinion in employing the Clonal

Selection, but they used three different methods for mutation, while this research

has applied only one method.

This research has disagreed with the study of Castro and Zuben (2000) in regard

to proposing the Immune Network Model.

This work has agreed with the studies of Kolter and Maloof (2006), Perda et al

(2007) and Al-Daoud et al (2009) in addressing the issue of virus detection, but

differed in the method used for detection. As for Kotler, he employed the machine

www.manaraa.com

148

 learning method with the detection rate of 98% and the false positive of 5%.

Despite the fact that, Perda employed the Semantic based detectors, and Al-

Daoud applied the ALCFG in detecting the metamorphic viruses, which were

generated by NGVCK0.03 and VCL32.

This study agreed with the studies of Forrest (1994), Kephart (1994), Edge et al

(2006), Unterleitner (2008) and Yu et al (2009) in concentrating on the AIS with

virus detection, but deviated from them, in applying the Negative Selection

Algorithm. This research employed the Clonal Selection Algorithm. Note that Yu et

al (2009) had the detection rate of 97%, and the false positive of 3.6%, and also

enclosed a list of detection rates for antivirus companies which were: Eset NOD32

= 94%, Kaspersky = 88%, Panda 2008 = 67%, KV 2008 = 55% and Kingsoft =

44%. Consequently, the results of this research (i.e. detection rate of 94.4% and

the false positive of 0%) are considered good and acceptable.

6.3. Limitations
The main limitation that faced this work is getting virus signatures. The researcher

contacted the antivirus companies, whose addresses were known to her.

Unfortunately they refused to respond, except Eset NOD32 which apologized for

not providing such information, because it was classified as confidential. After

prolonged research and asking experts in the field, the researcher found the VX

Heaven website, which provides such information to the public, for the purpose of

providing help to research in this field.

The other limitation is the difficulties in reaching the results in chapter four, due to

the large number of runs; (12) training runs, and (24) matching runs. Each run of

the training phase has taken around 20 hours, and each run in the matching phase

has taken approximately 2.85 hours. These are only the documented runs; the

researcher conducted many experiments that exceeded the documented number

by double.

Regarding chapter five, which is about the GA with the VDC algorithm, the

researcher performed several experiments before starting the documentation. For

example: when running the GA optimization process with a number of generations

www.manaraa.com

149

equaling 100, it took 17 consecutive days without reaching any results. It should

be in mind that when the number of generations was 5, it took 3 consecutive days.

To get the results in chapter five, GA optimization was executed 4 times, and each

run took around 5 continuous days. Then each run of the GA optimization with one

training task, has taken around 20 hours. After that, the ten times matching of the

resulted GA training, took around 1.82 hours. Knowing that, the researcher used

5 micro-computers with the best available properties that she was able to get.

These computers are 2 Acer laptops (Intel® Core™ 2 Duo CPU T6400 @ 2.00GHz

and 3GB RAM), an HP laptop (Intel® Core™ 2 Duo CPU T5600 @ 1.83GHz and

2.5GB RAM), an Acer PC (Intel® Core™ 2 Duo CPU E7300 @ 2.67GHz and

2GB RAM), and the fifth is a Magic PC (Intel® Core™ 2 Duo CPU E7300 @

2.80GHz and 4GB RAM).

The researcher tried to access computers with better properties from several

universities and the Royal Scientific Society, but unfortunately, she was denied

access to these computers due to the presence of confidential private information

for these institutions.

6.4. Future Work
After accomplishing this research, and getting the results, the researcher

recommended the following:

1. In the beginning the VDC algorithm used the initial fitness of the signatures as

random numbers. It is suggested that the Data Mining (the process of extracting

patterns from data, and transforming this data into information) in categorizing

the viruses according to their wide spread. To have their initial fitness

depending on the prevalence of the virus be applied.

2. The VDC algorithm employed the exact match between signatures and files. It

is recommended that different matching methods be applied. Such as

Euclidean Distance, Manhattan Distance or Hamming Distance.

3. Adding the Negative Selection Algorithm to the VDC algorithm, so that it would

be possible to distinguish between Self and Non-self in regard to the existing

files and later the detected infected files.

http://en.wikipedia.org/wiki/Data

www.manaraa.com

151

4. The use of different methods of mutation; such as Gauss Mutation, Cauchy

Mutation or Mean Mutation.

5. To apply the VDC algorithm to different types of malware.

6. To conduct studies on viruses' elimination with different suitable methods.

www.manaraa.com

151

The References

 [Aickelin,2004] Aickelin, U. (2004). "Artificial Immune Systems (AIS) – A New

Paradigm for Heuristic Decision Making", The University of

Nottingham, Nottingham, NG8 1BB, United Kingdom.

[Al-daoud,2009] Al daoud, E., Al-Shbail, A. and Al-Smadi, A. (2009). “Detecting

Metamorphic viruses by using Arbitrary Length of Control Flow

Graphs and Nodes Alignment”. Special Issue on ICIT 2009

Conference - Bioinformatics and Image. Ubiquitous Computing and

Communication Journal UbiCC Journal – Volume 4 No. 3.

[Castro,1999] Castro,L. and Zuben, F.(1999). "Artificial Immune Systems: Part

I – Basic Theory And Applications". Technical Report, TR – DCA

01/99.

[Castro,2000a] Castro,L. and Zuben, F.(2000). "An Evolutionary Immune

Network for Data Clustering". In Proceedings of the IEEE

Computer Society Press, SBRN’00 (Brazilian Symposium on Neural

Networks), vol. 1, pp. 84-89, Rio de Janeiro/RJ, 22-25.

[Castro,2001] Castro, L. and Zuben, F. (2001). "aiNet: An Artificial Immune

Network for Data Analysis". Idea Group Publishing, USA.

[Castro,2002a] Castro,L. and Timmis, J. (2002). "Artificial Immune Systems: A

Novel Paradigm to Pattern Recognition". SOCO-2002, University

of Paisley, UK, pp. 67-84.

[Castro,2002b] Castro, L. and Zuben, F. (2002). "Learning and Optimization

Using the Clonal Selection Principle". IEEE, vol. 6, n. 3, pp. 239-

251.

www.manaraa.com

152

[Chess,2000] Chess, D. M., and White, S. R. (2000)."An Undetectable Computer

Virus". IBM Thomas J. Watson Research Center. New York, USA.

[Cohen,1984] Cohen, F. (1984). "Computer Viruses - Theory and Experiments".

Published in Computers and Security, Vol. 6, pp. 22-35.

[Coppin,2004] Coppin, B. (2004). "Artificial Intelligence Illuminated". Jones and

Bartlett Publishers.

[D'haeseleer,1996] D’haeseleer, P., Forrest, S. and Helman, P. (1996). "An

Immunological Approach to Change Detection: Algorithms,

Analysis and Implications". IEEE Symposium on Security and

Privacy.

[Edge,2006] Edge, K., Lamont, G. and Raines, R. (2006) "A Retrovirus Inspired

Algorithm for Virus Detection & Optimization". Wright-Patterson

AFB, Dayton, OH USA 45433. GECCO’06, Washington, USA.

[EPSRC,2008] EPSRC (2008). Engineering and Physical Sciences Research

Council. available: http://www.artificial-immune-

systems.org/index.shtml Accessed at 10/3/2008.

[Forrest,1994] Forrest, S., Perelson, A., Allen, L. and Cherukuri, R. (1994). "Self-

Nonself Discrimination in a Computer". In Proceedings of IEEE

Symposium on Research in Security and Privacy.

[Goldberg,1989] Goldberg, D. (1989). "Genetic Algorithms in search,

Optimization, and Machine Learning". Addison-Wesley Publishing

Company.

http://www.epsrc.ac.uk/
http://www.artificial-immune-systems.org/index.shtml
http://www.artificial-immune-systems.org/index.shtml

www.manaraa.com

153

[Garrett,2005] Garrett, S. (2005). "How Do We Evaluate Artificial Immune

Systems?" University of Wales, Aberystwyth, Wales, SY23 3DB.

UK. 145-178.

[Greeger,2010] Creeger, M. (2010). "The battle is bigger than most of us realize:

CTO Roundtable: Malware Defense". Article development led by

queue.acm.org, April 2010 | vol. 53 | no. 4 | communications of the

ACM.

[Gregory,2004] Gregory, P. (2004). “Computer Viruses for Dummies”. Wiley

Publishing Inc. USA.

[Hang,2005] Hang, X. and Dai, H. (2005). "Applying both Positive and Negative

Selection to Supervised Learning for Anomaly Detection".

GECCO’05, Washington, D.C., USA. ACM 1-59593-010-8/05/0006.

[Harley,2001] Harley, D., Slade, R. and Gattiker, U. (2001) “Virus Revealed”.

McGraw-Hill companies. USA.

[Kephart,1994a] Kephart, J. (1994). "A Biologically Inspired Immune System for

computers". Published in Artificial Life IV, Proceedings of the Fourth

International Workshop on Synthesis and Simulation of Living

Systems, Rodney A. Brooks and Pattie Maes, eds., MIT Press,

Cambridge, Massachusetts, pp. 130-139.

[Kephart,1994b] Kephart, J., and Arnold, W. (1994). "Automatic Extraction of

Computer Virus Signatures". In Proceedings of tech 4th Virus

Bulletin International Conference, R. Ford, ed., Virus Bulletin Ltd.,

Abingdon, England, pp. 178-184.

www.manaraa.com

154

[Kephart,1994c] Kephart, J., Arnold, W., Chess, D., and White, S. (1994). Automatic

Immune System For Computers and Computer Networks.

International Business Machines Corporation, Armonk, N.Y.

Appl.No.: 4,872.

[Kephart,1997] Kephart, J., Sorkin, G., Swimmer, M. and White, S. (1997).

"Blueprint for a Computer Immune System".

IBM Thomas J. Watson Research Center. This paper was originally

presented at the Virus Bulletin International Conference in San

Francisco, California, USA.

[Kolter,2004] Kolter, J. Z., and Maloof, M. A. (2004). "Learning to Detect

Malicious Executables in the Wild". ACM SIGKDD, available:

http://doi.acm.org/10.1145/1014052.1014105. Accessed at

25/2/2008.

[Kolter,2006] Kolter, J. Z., and Maloof, M. A. (2006). "Learning to Detect and

Classify Malicious Executables in the Wild". Journal of Machine

Learning Research 7.

[Landesman,2008] Landesman, M. (2008). "What is a Virus Signature? ". available:

http://antivirus.about.com/od/whatisavirus/a/virussignature.htm.

Accessed at 30/12/2008.

[Liu,2006] Liu, R., Chen, L., and Wang, S. (2006). "Immune Clonal Strategies

Based on Three Mutation Methods". (Eds.): ICNC 2006, Part II,

LNCS 4222, pp. 114 – 121. Springer-Verlag Berlin Heidelberg.

[Mitchell,1996] Mitchell, M. (1996). "An Introduction to Genetic Algorithms". A

Bradford Book, The MIT Press: England.

http://doi.acm.org/10.1145/1014052.1014105
file://Srv/AskZad/E-Work/3%20-%20النسخ%20النهائية/soft2017/Jourdan/90012/10212-%20marwa%20eid%20تكويد/دكتوراة%20وماجستير%20علم%20الحاسوب/233955%20تم/afterJUDGEMENT/M.%20(2008).%20%22What%20is%20a%20Virus Signature%3f%20%22.%20available:%20http:/antivirus.about.com/od/whatisavirus/a/virussignature.htm.%20Accessed%20at%2030/12/2008
file://Srv/AskZad/E-Work/3%20-%20النسخ%20النهائية/soft2017/Jourdan/90012/10212-%20marwa%20eid%20تكويد/دكتوراة%20وماجستير%20علم%20الحاسوب/233955%20تم/afterJUDGEMENT/M.%20(2008).%20%22What%20is%20a%20Virus Signature%3f%20%22.%20available:%20http:/antivirus.about.com/od/whatisavirus/a/virussignature.htm.%20Accessed%20at%2030/12/2008
file://Srv/AskZad/E-Work/3%20-%20النسخ%20النهائية/soft2017/Jourdan/90012/10212-%20marwa%20eid%20تكويد/دكتوراة%20وماجستير%20علم%20الحاسوب/233955%20تم/afterJUDGEMENT/M.%20(2008).%20%22What%20is%20a%20Virus Signature%3f%20%22.%20available:%20http:/antivirus.about.com/od/whatisavirus/a/virussignature.htm.%20Accessed%20at%2030/12/2008

www.manaraa.com

155

[Okamotol,1999a] Okamoto, T. & Ishida, Y. (1999), “A Distributed Approach to

Computer Virus Detection and Neutralization by Autonomous

and Heterogeneous Agents”, In Proc of the ISADS’99, pp. 328-

331.

[Okamotol,1999b] Okamoto, T. & Ishida, Y. (1999), “Multiagent Approach Against

Computer Virus: An Immunity- Based System”, In Proc. of the

AROB’99, pp. 69-72.

[Pietzowski,2006] Pietzowski, A., Trumler, W. and Ungerer, T. (2006). "An Artificial

Immune System and its Integration into an Organic Middleware

for Self-Protection". GECCO’06, Seattle, Washington, USA. ACM

1-59593-186-4/06/0007.

[Perda,2007] Preda, M. D., Christodorescu, M., Jha, S., and Debray, S. (2007). "A

Semantics-Based Approach to Malware Detection". POPL’07,

Nice, France. ACM.

[Schmauder,2000] Schmauder, P.(2000). “Virus Proof”. Prima Publishing, Jawsa

media group. USA.

[Secure, 2008] Secure Computing Corporation. (2008). "Virus Signature

Solutions from Secure Computing". Accessed at 25/12/2008.

[Stalling, 2007] Stalling, W. (2007). "Network Security Essentials: Applications

and Standards". Third Edition. Person Education, Inc. USA.

www.manaraa.com

156

[Szor, 2005] Szor, P. (2005). "The Art of Computer Virus Research and

Defense ". Addison Wesley Professional. USA.

[TopTen, 2008] TopTenReviews. (2008). "2008 Anti-virus Software Report".

Available: http://anti-virus-software-review.toptenreviews.com/

Accessed at 25/2/2008.

[Unterleitner,2008] Unterleitner, M. (2008). "Computer Immune System for Intrusion

and Virus Detection: Adaptive Detection Mechanisms and their

Implementation". VMD Verlag Dr Muller Aktiengesellschaft & Co.

Germany.

[VXHeaven,2010] VX Heaven (2010). Available: http://vx.netlux.org/. Accessed at

1/1/2010.

[Wikipedia, 2010] Wikimedia Foundation (2010, Jun) Neural network, Wikipedia, the

free encyclopedia (online), available:

http://en.wikipedia.org/wiki/Main_Page Accessed at 26/6/2010.

[Yang, 2006] Yang, S. (2006). "A Comparative Study of Immune System Based

Genetic Algorithms in Dynamic Environments". GECCO’06,

Seattle, Washington, USA.

http://anti-virus-software-review.toptenreviews.com/

www.manaraa.com

157

[Yu, 2009] Yu, Z., Tao, L. and Renchao, Q. (2009). "Unknown Computer Virus

Detection Inspired by Immunity". ISSN 1673-9418 CODEN

JKYTA8, Journal of Frontiers of Computer Science and Technology.

Open Source References

[Castro,2000b] Castro, L., and Zuben, F. (2000a). CLONALG. MATLAB® Artificial

Immune Systems. Available:

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/demo.zip

Accessed at 12/03/2008.

[Kelsey,2003] Kelsey, J. (2003) B-cell algorithm (BCA) C++ code: A clonal selection

optimization algorithm. Available: http://www.artificial-immune-

systems.org/algorithms.shtml#clonal-alg Accessed at 12/03/2008.

[Watkins,2002] Watkins, A. (2002). AIRS: Artificial Immune Recognition System. C++

source code. Available: http://www.artificial-immune-

systems.org/algorithms.shtml#clonal-alg Accessed at 12/03/2008.

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/demo.zip
http://www.artificial-immune-systems.org/code/bca/BCA.tar.gz
http://www.artificial-immune-systems.org/algorithms.shtml#clonal-alg
http://www.artificial-immune-systems.org/algorithms.shtml#clonal-alg
http://www.artificial-immune-systems.org/algorithms.shtml#clonal-alg
http://www.artificial-immune-systems.org/algorithms.shtml#clonal-alg

www.manaraa.com

158

Appendixes

Appendix A:

The First Training table results

Table A.1: The first Training table results

Iteration
number

No of
signatures

Selection
threshold Mean fitness

Best
fitness

1 100 0.90 160.14 210.00

2 111 0.90 170.11 235.00

3 122 1.00 176.39 236.00

4 131 0.60 181.64 236.00

5 142 0.70 186.43 236.00

6 153 0.90 190.87 236.00

7 164 0.80 194.13 236.00

8 175 0.60 197.20 236.00

9 186 0.80 198.66 236.00

10 197 0.70 200.86 236.00

11 208 1.00 202.53 236.00

12 219 1.00 204.15 236.00

13 230 0.90 205.33 236.00

14 241 0.70 207.20 237.00

15 252 1.00 208.47 237.00

16 263 0.60 209.96 237.00

17 274 0.60 211.41 238.00

18 285 0.60 212.87 239.00

19 296 0.70 214.47 240.00

20 307 0.70 216.19 240.00

21 318 0.60 217.55 240.00

22 329 0.70 218.98 240.00

23 340 0.70 220.46 240.00

24 351 0.80 221.71 241.00

25 362 0.80 223.09 241.00

26 373 0.90 224.48 242.00

27 384 0.70 225.69 242.00

28 395 0.90 226.88 242.00

29 406 0.90 227.93 242.00

30 417 0.80 229.03 242.00

31 428 0.80 230.01 242.00

32 439 0.70 231.07 243.00

33 450 0.80 231.98 243.00

34 461 0.70 232.91 243.00

35 472 0.80 233.68 243.00

36 483 0.80 234.53 243.00

37 494 0.70 235.26 244.00

38 505 1.00 236.04 244.00

39 516 0.80 236.55 244.00

www.manaraa.com

159

40 527 0.60 237.03 244.00

41 538 1.00 237.49 245.00

42 549 0.80 237.95 245.00

43 560 0.70 238.36 245.00

44 571 0.80 238.77 245.00

45 582 0.60 239.14 245.00

46 593 0.70 239.53 245.00

47 604 0.90 239.80 245.00

48 615 0.70 240.02 245.00

49 626 0.60 240.23 245.00

50 637 0.80 240.45 246.00

51 648 0.70 240.64 246.00

52 659 0.80 240.81 246.00

53 670 0.60 240.99 246.00

54 681 1.00 241.18 246.00

55 692 0.80 241.35 246.00

56 703 0.80 241.53 247.00

57 714 0.70 241.67 247.00

58 725 1.00 241.83 247.00

59 736 0.70 241.97 247.00

60 747 0.70 242.12 247.00

61 758 0.70 242.26 247.00

62 769 0.60 242.41 247.00

63 780 0.60 242.53 247.00

64 791 1.00 242.68 247.00

65 802 0.70 242.81 247.00

66 813 0.80 242.95 248.00

67 824 0.60 243.09 248.00

68 835 0.60 243.23 249.00

69 846 0.60 243.36 249.00

70 857 0.70 243.51 249.00

71 868 0.80 243.63 249.00

72 879 0.90 243.75 249.00

73 890 0.80 243.88 249.00

74 901 0.90 244.01 249.00

75 912 0.70 244.13 249.00

76 923 1.00 244.26 249.00

77 934 0.80 244.37 249.00

78 945 0.60 244.50 250.00

79 956 1.00 244.64 250.00

80 967 0.70 244.76 250.00

81 978 0.80 244.88 250.00

82 989 0.60 244.99 251.00

83 1000 1.00 245.11 251.00

84 1011 0.80 245.23 251.00

85 1022 0.70 245.34 252.00

86 1033 1.00 245.48 252.00

87 1044 0.60 245.59 252.00

www.manaraa.com

161

88 1055 0.60 245.69 252.00

89 1066 0.90 245.79 252.00

90 1077 0.90 245.90 252.00

91 1088 0.90 246.02 252.00

92 1099 0.60 246.14 252.00

93 1110 1.00 246.26 252.00

94 1121 0.90 246.39 252.00

95 1132 0.90 246.49 253.00

96 1143 0.90 246.61 253.00

97 1154 1.00 246.72 253.00

98 1165 0.70 246.82 253.00

99 1176 0.90 246.92 253.00

100 1187 0.70 247.03 253.00

101 1198 1.00 247.15 253.00

www.manaraa.com

161

Appendix B: Parts of the Matching Results

B1: The matching of Sig7 with 5% infected files
The matching of Sig7 with the files pool with 5% infected files. At iteration number

5 new 100 files are added to the files' pool, with 5% of these files are infected.

The results are shown in Table (B.1).

Table AAA.1: The results of the matching of Sig7 with 5% infected files

Iteration
number

Mean fitness Best fitness

1 924.58382 1042.00

2 924.60363 1042.00

3 924.60363 1042.00

4 924.60363 1042.00

5 924.60363 1042.00

6 924.60694 1042.00

… … …

97 924.60694 1042.00

98 924.60694 1042.00

99 924.60694 1042.00

100 924.60694 1042.00

101 924.60694 1042.00

As a result, the number of infected files = 28 and the Mean fitness = 56..5455.

Figure i: The Mean fitness of matching Sig7 run with 5% infected files

Table (B.1) and Figure (i) show that the Mean fitness increases by 0.01539 in the

first iteration whereas it increases in the iteration number 5 by 0.00889.

The Best fitness does not change; this explains the straight line in Figure (ii). The

number of detected files is 28 out of 30 (25+5) with a Detection rate of 93.3%,

where the 25 infected files are in the original pool, and the 5 are from the new

added pool. As a result this detection rate is accepted.

www.manaraa.com

162

Figure ii: The Best fitness of matching Sig7 run with 5% infected files

B2: The matching of Sig2 with 25% infected files
The matching of Sig2 with the files pool with 25% infected files. At iteration

number 50 new 100 files are added to the files' pool, with 25% of these files are

infected. The results are shown in Table (B.2).

Table B.2: The results of the matching of Sig2 with 25% infected files

Iteration
number

Mean fitness Best fitness

1 223.59950 251.00

2 223.70190 263.00

3 223.70190 263.00

4 223.70190 263.00

5 223.70190 263.00

… … …

50 223.70190 263.00

51 223.71676 264.00

… … …

98 223.71676 264.00

99 223.71676 264.00

100 223.71676 264.00

101 223.71676 264.00

As a result, the number of infected files= 142 and the Mean fitness = 223.7168.

www.manaraa.com

163

Figure iii: The Mean fitness of matching Sig2 run with 25% infected files

Table (B.2) and Figure (iii) show that the Mean fitness increases by 0.10240 in

the first iteration whereas it increases in the iteration number 50 by 0.01486.

The Best fitness increases in the first iteration by 12 whereas it increases at

iteration number 50 by 1 as illustrated in Figure (iv). The number of detected files

is 142 out of 150 (125+25) with a Detection rate of 94.7%, where the 125 infected

files are in the original pool, and the 25 are from the new added pool. As a result

this detection rate is accepted.

Figure iv: The Best fitness of matching Sig2 run with 25% infected files

B3: The matching of Sig12 with 25% infected files
The matching of Sig12 with the files pool with 25% infected files. At iteration

number 50 new 100 files are added to the files' pool, with 25% of these files are

infected. The results are shown in Table (B.3).

www.manaraa.com

164

Table B.3: The results of the matching of Sig12 with 25% infected files

Iteration
number

Mean fitness Best fitness

1 225.28241 252.00

2 225.38481 263.00

3 225.38481 263.00

4 225.38481 263.00

5 225.38481 263.00

… … …

50 225.38481 263.00

51 225.39967 264.00

… … …

98 225.39967 264.00

99 225.39967 264.00

100 225.39967 264.00

101 225.39967 264.00

As a result, the number of infected files= 142 and the Mean fitness = 225.3997.

Figure v: The Mean fitness of matching Sig12 run with 25% infected files

Table (B.3) and Figure (v) show that the Mean fitness increases by 0.10240 in

the first iteration whereas it increases in the iteration number 50 by 0.01486.

The Best fitness increases in the first iteration by 11 whereas it increases at

iteration number 50 by 1 as illustrated in Figure (vi). The number of detected files

is 142 out of 150 (125+25) with a Detection rate of 94.7%, where the 125 infected

files are in the original pool, and the 25 are from the new added pool. As a result

this detection rate is accepted.

www.manaraa.com

165

Figure vi: The Best fitness of matching Sig12 run with 25% infected files

www.manaraa.com

166

B4: The matching of Sig5 with 50% infected files

The matching of Sig5 with the files pool with 50% infected files. At iteration

number 50 new 100 files are added to the files' pool, with 50% of these files are

infected. The results are shown in Table (B.4).

Table B.4: The results of the matching of Sig5 with 50% infected files

Iteration
number

Mean fitness Best fitness

1 485.31662 552.00

2 485.38991 552.00

3 485.38991 552.00

4 485.38991 552.00

5 485.38991 552.00

… … …

50 485.38991 552.00

51 485.40106 552.00

… … …

98 485.40106 552.00

99 485.40106 552.00

100 485.40106 552.00

101 485.40106 552.00

As a result, the number of infected files= 288 and the Mean fitness = 485.4011.

Figure vii: The Mean fitness of matching Sig5 run with 50% infected files

Table (B.4) and Figure (vii) show that the Mean fitness increases by 0.07329 in

the first iteration whereas it increases in the iteration number 50 by 0.01115.

The Best fitness does not change; this explains the straight line in Figure (viii).

The number of detected files is 288 out of 300 (250+50) with a Detection rate of

96%, where the 250 infected files are in the original pool, and the 50 are from the

new added pool. As a result this detection rate is accepted.

www.manaraa.com

167

Figure viii: The Best fitness of matching Sig5 run with 50% infected files

B5: The matching of Sig12 with 75% infected files
The matching of Sig12 with the files pool with 75% infected files. At iteration

number 5 new 100 files are added to the files' pool, with 75% of these files are

infected. The results are shown in Table (B.5).

Table B.5: The results of the matching of Sig12 with 75% infected files

Iteration
number

Mean fitness Best fitness

1 225.28241 252.00

2 225.58629 284.00

3 225.58629 284.00

4 225.58629 284.00

5 225.58629 284.00

6 225.61767 290.00

… … …

97 225.61767 290.00

98 225.61767 290.00

99 225.61767 290.00

100 225.61767 290.00

101 225.61767 290.00

As a result, the number of infected files = 406 and the Mean fitness = 225.6177.

www.manaraa.com

168

Figure ix: The Mean fitness of matching Sig12 run with 75% infected files

Table (B.5) and Figure (ix) show that the Mean fitness increases by 0.30388 in

the first iteration whereas it increases in the iteration number 5 by 0.03138.

The Best fitness increases in the first iteration by 32 whereas it increases at

iteration number 5 by 6 as illustrated in Figure (x). The number of detected files

is 406 out of 450 (375+75) with a Detection rate of 90.2%, where the 375 infected

files are in the original pool, and the 75 are from the new added pool. As a result

this detection rate is accepted.

Figure x: The Best fitness of matching Sig12 run with 75% infected files

B6: The matching of Sig12 on 100% infected files
The matching of Sig12 with the files pool with 100% infected files. At iteration

number 50 new 100 files are added to the files' pool, with 100% of these files

infected. The results are shown in Table (B.6).

www.manaraa.com

169

Table B.6: The results of the matching of Sig12 with 100% infected files

Iteration
number

Mean fitness Best fitness

1 225.28241 252.00

2 225.69199 305.00

3 225.69199 305.00

4 225.69199 305.00

5 225.69199 305.00

… … …

50 225.69199 305.00

51 225.73988 312.00

… … …

98 225.73988 312.00

99 225.73988 312.00

100 225.73988 312.00

101 225.73988 312.00

As a result, the number of infected files = 554 and the Mean fitness = 225.7399.

Figure xi: The Mean fitness of matching Sig12 run with 100% infected files

Table (B.6) and Figure (xi) show that the Mean fitness increases by 0.40958 in

the first iteration whereas it increases in the iteration number 50 by 0.04789. The

Best fitness increases in the first iteration by 53 whereas it increases at iteration

number 50 by 7 as illustrated in Figure (xii). The number of detected files is 554

out of 600 (500+100) with a Detection rate of 92.3%, where the 500 infected files

are in the original pool, and the 100 are from the new added pool. As a result

this detection rate is accepted.

www.manaraa.com

171

Figure xii: The Best fitness of matching Sig12 run with 100% infected files

www.manaraa.com

171

Appendix C: Parts of the GA Matching Results

C1: The GA matching of SigGA2 with 25% infected files

SigGA2 is tested with the files pool with 25% infected files. At iteration number

50 new 100 files are added to the files' pool, with 25% of these files infected. The

results are shown in Table (C.1).

Table C.1: The results of the matching of SigGA2 with 25% infected files

Iteration
number

Mean fitness Best fitness

1 2329.15277 2623.00

2 2329.25516 2623.00

3 2329.25516 2623.00

4 2329.25516 2623.00

5 2329.25516 2623.00

… … …

50 2329.25516 2623.00

51 2329.27002 2623.00

… … …

98 2329.27002 2623.00

99 2329.27002 2623.00

100 2329.27002 2623.00

101 2329.27002 2623.00

As a result, the number of infected files=142 and the Mean fitness= 2329.3.

Figure xiii: The Mean fitness of matching SigGA2 run with 25% infected files

Table (C.1) and Figure (xiii) show that the Mean fitness increases by 0.10239 in

the first iteration whereas it increases in the iteration number 50 by 0.01486.

The Best fitness does not change; this explains the straight line in Figure (xiv).

www.manaraa.com

172

 The number of detected files is 142 out of 150 (125+25) with a Detection rate of

94.7%, where the 125 infected files are in the original pool, and the 25 are from

the new added pool. As a result this detection rate is accepted.

Figure xiv: The Best fitness of matching SigGA2 run with 25% infected files

C2: The GA matching of SigGA3 with 100% infected files
SigGA3 is tested with the files pool with 100% infected files. At iteration number

50 new 100 files are added to the files' pool, with 100% of these files infected.

The results are shown in Table (C.2).

Table C.2: The results of the matching of SigGA3 with 100% infected files

Iteration
number

Mean fitness Best fitness

1 1078.03799 1233.00

2 1078.44756 1233.00

3 1078.44756 1233.00

4 1078.44756 1233.00

5 1078.44756 1233.00

… … …

50 1078.44756 1233.00

51 1078.49546 1233.00

… … …

98 1078.49546 1233.00

99 1078.49546 1233.00

100 1078.49546 1233.00

101 1078.49546 1233.00

As a result, the number of infected files=554 and the Mean fitness= 1078.5.

www.manaraa.com

173

Figure xv: The Mean fitness of matching SigGA3 run with 100% infected files

Table (C.2) and Figure (xv) show that the Mean fitness increases by 0.40957 in

the first iteration whereas it increases in the iteration number 50 by 0.04790.

The Best fitness does not change; this explains the straight line in Figure (xvi).

The number of detected files is 554 out of 600 (500+100) with a Detection rate of

92.3%, where the 500 infected files are in the original pool, and the 100 are from

the new added pool. Hence this detection rate is accepted.

Figure xvi: The Best fitness of matching SigGA3 run with 100% infected files

www.manaraa.com

174

Appendix D: Malware Types

There are several types of malware according to Stalling's categorization, with

the addition of the spyware and the adware as they are classified as other types

of malware without a harmful intent:

- Virus: a computer program written by a person that attaches itself to a

program, and propagates copies of itself to other programs, and infect any

computer without the permission or knowledge of the user. The virus can

spread when its host is taken to the target computer either by being sent

over a network or the Internet, or carried on a removable medium such as

a floppy disk, CD, DVD, or USB drive.

- Worm: is a self-contained program (or set of programs) that spread from

computer to computer, wreaking havoc on everything they touch. Unlike

viruses, worms do not need to attach themselves to a host program. They

are stand alone application that have their own population system, and

spread fast through the internet by scanning for computers that have

vulnerabilities. A worm usually executes itself automatically on a remote

machine without any extra help from a user, but some worms such as

mailer or mass-mailer worms may need the help of a user to be executed.

Another difference between worms and viruses is that worms always

cause harm to the network, if only by consuming bandwidth, whereas

viruses almost always corrupt or modify files on a targeted computer.

- Trojan horse: A program that contains unexpected additional

functionality, that appears to the users to interest and entice them to run

the program to perform a desirable function, but in fact it facilitates

unauthorized access to the computer system. Trojan horses are different

from worms and viruses as they are not self-replicating, and they require

interaction with a hacker to fulfill their purpose. In other cases, hackers

leave behind Trojanized versions of real tools to camouflage their activities

on a computer, so they can retrace their steps and perform malicious

activities to the compromised system later.

http://en.wikipedia.org/wiki/Floppy_disk
http://en.wikipedia.org/wiki/Compact_Disc
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/USB_flash_drive
http://en.wikipedia.org/wiki/Hacker

www.manaraa.com

175

- Logic bomb: is a routine or set of routines that are activated when a

particular set of conditions occur to trigger the activation of these routines.

logic bomb may be a component of a virus or Trojan

- Backdoor (trapdoor): a devious little program that allows secret access

without user permission. It may take the form of an installed program, or a

modification to an existing program or hardware device. The backdoor

virus enters a system secretly by bypassing normal authentication, to let

other users across the internet have unrestricted remote access to the

infected system. The backdoor program uses two sets of files to perform

its processing: files that reside on the infected PC (which becomes the

server PC for remote access) and files that reside on the client PCs that

accesses the system from across the net.

- Exploits: a hacker can construct specially coded messages that exploit

one of the vulnerabilities that may be discovered in the programs that

receive messages over the network. Depending on the actual use of the

exploit code, the exploitation may be malicious as the hacker takes the

control of a victim computer, and can cause this computer to do anything

the hacker wants to do, even send these coded messages to other

computers. The severity of the threat depends on the intention of the

hacker. White hat hackers create a form of exploit code for penetration

"pen" testing. The goal of the exploit code is to run a program on a remote,

networked system automatically, or provide other forms of more highly

privileged access to the target system.

- Downloaders: a malicious program that installs other items on a machine

that is under attack. Usually, a downloader is sent in e-mails, and when it

is executed (sometimes aided with the help of an exploit), it downloads

malicious content from a Web site and then extracts and runs its content.

http://en.wikipedia.org/wiki/Authentication

www.manaraa.com

176

- Auto-rooter: is a malicious hacker tools that use a collection of exploits to

break into a specified target machines remotely, to gain root on the

machine. As a result the hacker gains administrative privileges to the

machine.

- Kit (virus generator): a set of tools used to generate new viruses

automatically. Virus writers developed kits, as the Virus Creation

Laboratory (VCL) or PSMPC generators which are menu-based

applications. With such tools, even novice users are able to develop

harmful computer viruses without much background knowledge.

- Spammer programs: are used to send unwanted messages to Instant

Messaging groups, newsgroups, or any kind of mobile device in forms of

e-mail or cell phone SMS. The primary motivation of spammers is to make

money by generating traffic to Web sites, and usually spam messages are

used to implement phishing attacks.

- Flooders: are used by hackers to attack networked computer systems

with a large volume of traffic to carry out a Denial of Service (DoS) attack.

- Key-loggers: is a small program that captures and records keystrokes

and mouse movement on a compromised system, in an attempt to learn

the bank account numbers, credit card numbers, and other sensitive

information that the user does not want strangers to know about. For that

matter, many viruses attempt to install key loggers on the user computer.

- Rootkit: a set of tools used by hackers after breaking into a computer

system with exploits, and gaining root-level access by installing modified

versions of common tools or trojanized system applications. Such

programs can include monitoring utilities and system processes

gimmicked so that they do not draw attention to illegitimate processes.

They can also include utilities that are modified to enable the hacker to

escalate account privileges, or to hide other component files.

www.manaraa.com

177

- Spyware: spyware programs are secretly installed on the computers, to

collect information about the users without their knowledge. These

programs can collect various types of personal information, such as visited

sites and internet surfing habits, and can also interfere with the user's

control of the computer such as installing additional software and

redirecting Web browser activity. They can change the computer's settings

as well, in addition to secretly monitoring the user's computing.

- Adware: advertising-supported software is any software package which

automatically plays, displays, or downloads advertisements to a computer

after installing the software on it, or while the application is being used.

Some types of adware are also spyware [Schmauder, 2000, Harley, 2001,

Gregory, 2004, and Stalling, 2007] .

http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Personally_identifiable_information
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Spyware

www.manaraa.com

178

Appendix E
Antivirus Software Generations

According to Stalling (2007) there are four generations of antivirus software, and

Szor (2005) added on them:

First generation: simple scanners

There are two types of simple scanners: a scanner that requires a virus signature

to identify a virus which has essentially the same structure and bit pattern in all

copies. Such scanners are limited to the detection of known viruses. The other

type maintains a record of the length of programs, and looked for changes in

length. Szor described antivirus scanners as simple programs that look for

sequences of bytes extracted from computer viruses in files and in memory to

detect them. This is, of course, one of the most popular methods to detect

computer viruses, and it is reasonably effective. Nowadays, state-of-the-art

antivirus software uses a lot more smart features to detect complex viruses, which

cannot be handled using first-generation scanners alone. And he described many

techniques of virus detection as first generation. This research mentions the

following: the string scanning, Wildcards, Mismatches, Hashing, Bookmarks and

Top-and-tail scanning; String scanning technique is the simplest approach to

detect computer viruses. It uses an extracted sequence of bytes (strings) that is

typical of the virus but not likely to be found in clean programs. The sequences

extracted from the computer viruses are then organized in databases, which the

virus scanning engines use to search systematically predefined areas of files and

system areas to detect the viruses in the limited time allowed for the scanning.

Wildcards technique is often supported by simple scanners. Typically, a wildcard

is allowed to skip bytes or byte ranges, and some scanners also allow regular

expressions. For example on the wildcards: "0400 B801 020E 07BB ??02 %3

33C9 8BD1 419C", where (??) means to ignore this byte, and (%3 33) means to

try to match 33 in any of the following 3 positions and if matched continue.

http://www.vx.netlux.org/lib/aps00.html#cb12
http://www.vx.netlux.org/lib/aps00.html#cb13
http://www.vx.netlux.org/lib/aps00.html#cb15
http://www.vx.netlux.org/lib/aps00.html#cb16

www.manaraa.com

179

Mismatches technique means mismatching in strings. It allows N number of bytes

in the string to be any value, regardless of their position in the string.

Generic detection technique scans for several or all known variants of a family of

computer viruses using a simple string. When more than one variant of a

computer virus is known, the set of variants is compared to find common areas

of code. A simple search string is selected that is available in as many variants

as possible. Typically, a generic string contains both wildcards and mismatches.

Hashing technique is a common term for techniques that speed up searching

algorithms. Hashing might be done on the first byte or 16-bit and 32-bit words of

the scan string. This allows further bytes to contain wildcards. Virus researchers

can control hashing even better by being selective about what start bytes the

string contains. For example, it is a good idea to avoid first bytes that are common

in normal files, such as zeros. With further efforts, the researcher can select

strings that typically start with the same common bytes, reducing the number of

necessary matches.

Bookmarks technique (also called check bytes) is a simple way to guarantee

more accurate detections and disinfections. Usually, a distance in bytes between

the start of the virus body (often called the zero byte of the body) and the detection

string is calculated and stored separately in the virus detection record.

Top-and-tail scanning technique is used to speed up virus detection by scanning

only the top and the tail of a file, rather than the entire file.

Second generation: heuristic scanners

The scanner uses heuristic rule to search for probable virus infection. There are

two approaches: the first one looks for fragments of a code that are often

associated with viruses.

The second approach is integrity checking; for each program a checksum can be

appended, then if a virus infects a program this checksum is changed. But Szor

described more details about the techniques of this generation. The most

important techniques are: Smart scanning, Skeleton detection, nearly exact

identification, exact identification, Heuristic analysis, and Integrity checking.

www.manaraa.com

181

Smart scanning skips instructions like No Operation (NOP) in the host program,

and does not store such instructions in the virus signature.

Skeleton detection is especially useful in detecting macro virus families. Rather

than selecting a simple string or a checksum of the set of macros, the scanner

parses the macro statements line to line and drops all nonessential statements,

as well as the aforementioned white spaces.

Nearly exact identification is based on the use of a checksum (such as a CRC32)

range that is selected from the virus body. Typically, a disinfection-specific area

of the virus body is chosen and the checksum of the bytes in that range is

calculated. The advantage of this method is better accuracy. This is because a

longer area of the virus body can be selected, and the relevant information can

be still stored without overloading the antivirus database: the number of bytes to

be stored in the database is often the same for a large range and a smaller one.

Obviously, this is not the case with strings because the longer strings consume

more disk space and memory.

Unlike nearly exact identification, which uses the checksum of a single range of

constant bytes in the virus body, exact identification uses as many ranges as

necessary to calculate a checksum of all constant bits of the virus body.

Heuristic analysis has proved to be a successful way to detect new viruses. The

biggest disadvantage of heuristic analyzer based scanners is that they often find

false positives, which is not cost-effective for users. In some ways, however, the

heuristic analyzer is a real benefit. Heuristics are closely related to a good

understanding of the actual infection techniques of a particular virus type.

Different virus types require completely different rules on which the heuristic

analyzer logic can be built. The usual method of binary heuristics is to emulate

the program execution and look for suspicious code combinations.

Integrity checking is a generic method that detects and prevents changes to the

file and other executable objects based on their integrity. For example, on-

demand integrity checkers can calculate the checksums of each file using some

known algorithm, such as a simple CRC32. Indeed, even simple CRC algorithms

work effectively by changing the generator polynomial. On-demand integrity

www.manaraa.com

181

checkers use a checksum database that is created on the protected system or

elsewhere, such as an online location. This database is used each time the

integrity checker is run to see whether any object is new on the system, or

whether any objects have changed checksums. The detection of new and

changed objects is clearly the easiest way to find out possible virus infections,

and other system compromises.

Heuristics have evolved much over the last decade. Heuristic detection does not

identify viruses specifically, but extracts features of viruses and detects classes

of computer viruses generically.

Third generation: Activity Traps

The activity traps programs are memory-resident programs that identify a virus

by its actions rather than its structure in an infected program. Such programs

have the advantage that it is not necessary to develop signatures and heuristics

for a wide range of viruses. Rather, it is necessary only to identify the small set

of actions that indicate an infection is being attempted and then to intervene. Szor

mentioned the Behavior Blocking as another set of systems that attempt to block

virus infections based on application behavior. One of the first antivirus solutions,

FluShot, belongs to this class of computer virus protection. For example, if an

application opens another executable for write access, the blocker may display a

warning asking for the user's permission to grant the write access. Unfortunately,

such low-level events can generate too many warnings and therefore often

become less acceptable to users than integrity checkers. Furthermore, the

behavior of each class of computer virus can be significantly different, and the

number of behavioral patterns that can cause infections is infinite. Behavior-

blocking systems are not useless; they still work effectively against large classes

of computer viruses. In fact, they can be implemented using heuristic methods.

Heuristics can reduce the false positives by providing better understanding of the

attack.

www.manaraa.com

182

Fourth-generation: full-featured protection

The full featured protection products are packages consisting of a variety of

antivirus techniques used in conjunction. These include scanning and activity trap

components.

In addition, such a package includes access control capability, which limits the

ability of viruses to penetrate a system and then limits the ability of a virus to

update files in order to pass on the infection.

Szor mentioned more techniques like: Algorithmic Scanning Methods (Filtering

and The X-RAY Method), code emulation, Metamorphic Virus Detection

Examples (Geometric Detection, Disassembling Techniques and Using

Emulators for Tracing), Heuristic Analysis Using Neural Networks, Inoculation

and Sand-boxing.

Algorithmic scanning is a set of hard-coded detection routines that are typically

released with the core engine code. There are two methods that deserve to be

described; Filtering and The X-RAY Method.

The filtering technique is increasingly used in second-generation scanners. The

idea behind filtering is that viruses typically infect only a subset of known object

types. This gives the scanner an advantage, which reduces the number of string

matches the scanner must perform.

Algorithmic scanning relies strongly on filters. Because such detections are more

expensive in terms of performance, algorithmic detection needs to introduce good

filtering. A filter can be anything that is virus-specific: the type of the executable,

the identifier marks of the virus in the header of the scanned object, suspicious

code section characteristics or code section names, and so on. Unfortunately,

some viruses give little opportunity for filtering.

X-RAY scanning takes advantage of all single-encryption methods and performs

these on selected areas of files, such as top, tail. Thus the scanner can still use

simple strings to detect encrypted and even some difficult polymorphic viruses.

http://www.vx.netlux.org/lib/aps00.html#cb31
http://www.vx.netlux.org/lib/aps00.html#cb33
http://www.vx.netlux.org/lib/aps00.html#cb31
http://www.vx.netlux.org/lib/aps00.html#cb33

www.manaraa.com

183

 The scanning process is a bit slower, but the technique is general and therefore

useful. For example: the virus uses a constant XOR encryption method with a

randomly selected byte as a key stored in the virus.

Code emulation is an extremely powerful virus detection technique. A virtual

machine is implemented to simulate the CPU and memory management systems

to mimic the code execution. Thus malicious code is simulated in the virtual

machine of the scanner, and no actual virus code is executed by the real

processor.

Metamorphic Virus Detection Examples; there is a level of metamorphosis

beyond which no reasonable number of strings can be used to detect the code

that it contains. At that point, other techniques must be used, such as examination

of the file structure or the code stream, or analysis of the code's behavior. To

detect a metamorphic virus perfectly, a detection routine must be written which

can regenerate the essential instruction set of the virus body from the actual

instance of the infection. Other products use shortcuts to try to solve the problem,

but such shortcuts often lead to an unacceptable number of false positives. Some

useful techniques are introduced; Geometric Detection, Disassembling

Techniques and Using Emulators for Tracing.

Geometric detection is the virus-detection technique based on alterations that a

virus has made to the file structure. File viruses often rely on a virus infection

marker to detect already infected files and avoid multiple infections. Such

identifier can be useful to the scanner in combination with the other infection-

induced geometric changes to the file. This makes geometric detection more

reliable, but the risk of the false positives only decreases; it never disappears.

Disassembling Techniques are techniques used to separate or take apart the

stream of code into individual instructions. This is useful for detecting viruses that

insert garbage instructions between their core instructions. Simple string

searching cannot be used for such viruses because instructions can be quite

long, and there is a possibility that a string can appear "inside" an instruction,

rather than being the instruction itself

www.manaraa.com

184

.Using Emulators for Tracing is very useful for working with viruses because it

allows virus code to execute in an environment in which it cannot escape. Code

that runs in an emulator can be examined periodically, or when particular

instructions are executed. If used properly, emulators are still very useful in

detecting metamorphic viruses.

Heuristic Analysis Using Neural Networks; in general, a trained neural network

seems to be overkill for detecting a single virus because of the amount of data

and computations required. Even a well-optimized neural network scanner can

decrease overall scanning performance by about 5%. Thus it is more interesting

that neural networks can be applied to heuristic computer virus detection. Neural

network based heuristics depend on a good training set. With more 32-bit

Windows viruses in the training set, the automatically trained heuristic produces

slightly better results. In practice, neural network heuristics are very effective

against closely related variants of viruses that are used in the original training set.

They also yield good results against new families of computer viruses that are

similar enough to the feature set of known viruses in the training set. It is also

important to select n-grams of the virus from the entire virus body. Some antivirus

vendors are attempted to train neural networks with n-grams selected from

emulated instructions of the virus body. However, looping virus code can often

generate instruction sets (n-grams) similar to normal programs, yielding an

unacceptable false positive ratio.

Inoculation software adds the marker of the viruses to objects, preventing

infections, because the virus will believe that all objects are already infected.

Unfortunately, this solution has some drawbacks: each virus has a different

marker (or no marker at all), and overused inoculation can impair the

effectiveness of the virus detection and disinfection.

Sand-boxing solutions introduce cages, "virtual subsystems" of the actual

operating system. The idea is to let the un-trusted programs run on a virtual

machine that has access to the same information to which the user has access

on the local machine, but only has access to a copy of the information within the

cage. On the virtual system, the new un-trusted program, such as a computer

www.manaraa.com

185

 virus, is able to read files that are "on the real system," even read the Registry

keys and so on, but its networking capabilities are reduced. And when it attempts

to make any changes, it makes them in the replica of information within the cage.

Thus the virus is free to do anything it wants, but this happens in a cage instead

of in the real system. When the application finishes execution, the file and

Registry changes can be thrown away and malicious-looking actions can be

logged.

www.manaraa.com

186

